3 (a) C.-M. Ho, W.-Y. Yu and C.-M. Che, Angew. Chem., Int. Ed., 2004,
43, 3303; (b) K. Lee, Y.-H. Kim, S. B. Han, H. Kang, S. Park, W. S. Seo,
J. T. Park, B. Kim and S. Chang, J. Am. Chem. Soc., 2003, 125, 6844;
(c) C. D. Brooks, L.-C. Huang, M. McCarron and R. A. W. Johnstone,
Chem. Commun., 1999, 37; (d) D. G. Lee, T. Chen and Z. Wang, J. Org.
Chem., 1993, 58, 2918.
4 J. W. McMillan, H. E. Fischer and J. Schwartz, J. Am. Chem. Soc.,
1991, 113, 4014.
5 (a) M. A. Fox and C. Chen, J. Am. Chem. Soc., 1981, 103, 6757; (b)
M. A. Fox and C.-C. Chen, Tetrahedron Lett., 1983, 24, 547; (c)
Y. Kanno, T. Oguchi, H. Sakuragi and K. Tokumaru, Tetrahedron
Lett., 1980, 21, 467.
6 (a) J. Eriksen and C. S. Foote, J. Am. Chem. Soc., 1980, 102, 6083; (b)
J. Eriksen, C. S. Foote and T. L. Parker, J. Am. Chem. Soc., 1977, 99,
6455; (c) S. L. Mattes and S. Farid, J. Am. Chem. Soc., 1986, 108, 7356;
(d) B.-M. Kwon, C. S. Foote and S. I. Khan, J. Org. Chem., 1989, 54,
3378; (e) L. E. Manring, J. Eriksen and C. S. Foote, J. Am. Chem. Soc.,
1980, 102, 4275.
7 (a) M. A. Miranda and H. Garc´ıa, Chem. Rev., 1994, 94, 1063; (b)
J. Mattay, M. Vondenhof and R. Denig, Chem. Ber., 1989, 122, 951; (c)
R. Akaba, K. Ohshima, Y. Kawai, Y. Obuchi, A. Negishi, H. Sakuragi
and K. Tokumaru, Tetrahedron Lett., 1991, 32, 109; (d) R. Akaba,
H. Sakuragi and K. Tokumaru, J. Chem. Soc., Perkin Trans. 2, 1991,
291; (e) H. Garc´ıa, M. A. Miranda, F. Mojarrad and M.-J. Sabater,
Tetrahedron, 1994, 50, 8773.
8 (a) A. Corma, V. Forne´s, H. Garc´ıa, M. A. Miranda, J. Primo and
M.-J. Sabater, J. Am. Chem. Soc., 1994, 116, 2276; (b) J. C. Scaiano and
H. Garc´ıa, Acc. Chem. Res., 1999, 32, 783; (c) M. L. Cano, F. L. Cozens,
H. Garc´ıa, V. Mart´ı and J. C. Scaiano, J. Phys. Chem., 1996, 100, 18152;
(d) A. Sanjua´n, M. Alvaro, G. Aguirre, H. Garc´ıa and J. C. Scaiano,
J. Am. Chem. Soc., 1998, 120, 7351; (e) A. Sanjua´n, G. Aguirre,
M. Alvaro and H. Garc´ıa, Appl. Catal., B, 1998, 15, 247.
9 (a) F. Blatter and H. Frei, J. Am. Chem. Soc., 1993, 115, 7501; (b)
F. Blatter and H. Frei, J. Am. Chem. Soc., 1994, 116, 1812; (c) F. Blatter,
H. Sun, S. Vasenkov and H. Frei, Catal. Today, 1998, 41, 297; (d)
V. Ramamurthy, P. Lakshminarasimhan, C. P. Grey and L. J. Johnston,
Chem. Commun., 1998, 2411; (e) A. Corma and H. Garc´ıa, Chem.
Commun., 2004, 1443.
TPY give isomerized olefins (.94%), while reaction with TPT
+
gives 2 with .10% selectivity.8a Olefin is stabilized within the
?
cavity as a charge-compensating cation of zeolite.8a These diaryl
olefins have relatively negative oxidation potential (Table S1{)
and, hence, are stabilized more than monoaryl olefins. The strong
stabilization may strongly suppress the CLC bond cleavage by O2,
thus leading to lower ketone production. Reaction of trans-
b-methylstyrene with TPY affords allylbenzene (50%) together
with 2 (Table S2{). This is because the carbocation of trans-
b-methylstyrene is transformed into a more stable allylic cation via
proton transfer catalyzed by acid sites within the zeolite.14
In conclusion, we found that TPY promotes the highly selective
transformation of aryl olefins with a terminal CLC bond to the
corresponding ketones with O2 by visible light irradiation. This is
triggered simply by suppression of dimer formation within the
narrow zeolite cavity. The proposed system still contains several
problems; we are now addressing issues (i) and (iii) by varying the
cavity size and number of acid sites on the zeolite. Nevertheless,
the proposed concept will contribute to the development of a more
efficient photosensitizing system for selective transformation of
molecules.
We are grateful for financial support by Grants-in-Aid for
Scientific Research (No. 15360430) and on Priority Areas
‘‘Fundamental Science and Technology of Photofunctional
Interfaces (417)’’ (Nos. 15033244 and 17029037) from the
Ministry of Education, Culture, Sports, Science and Technology,
Japan (MEXT).
Notes and references
{ TPY was synthesized using HY zeolite (Tosoh Corp.; HSZ-331HSA;
SiO2/Al2O3 5 6; BET surface area, 650 m2 g21; particle size, 4 mm), as
follows: a mixture of chalcone (100 mg) and acetophenone (50 mg)
dissolved in isooctane (50 ml) was refluxed for 12 h with HY zeolite (1.0 g).
The obtained yellowish solid was washed by Soxhlet extraction with
CH2Cl2 for 18 h and dried under vacuum. The diffuse reflectance UV–vis
spectrum of TPY is identical to the absorption spectrum of TPT dissolved
in CH2Cl2 (Fig. S1{). The TP+ content within TPY was determined by the
loss of weight at 523–973 K on a thermogravimetric profile (Fig. S2{).
§ TPY (34 mg containing 7.5 mmol TP+) was suspended in dry MeCN
(15 ml) containing each olefin (750 mmol) within a Pyrex glass tube
(id 10 mm; capacity, 20 ml), and each tube sealed using a rubber septum
cap. TPY was dispersed well by ultrasonication for 5 min, and O2 was
bubbled through the solution for 10 min at 273 K to avoid the evaporation
of solvent. The tube was photoirradiated with magnetic stirring by a 2 kW
Xe lamp (USHIO Inc.) filtered through an aqueous NaNO2 solution
(3 wt%) to give light wavelengths of l . 400 nm (light intensity at 400–
470 nm: 477 mW m22). The solution temperature during photoirradiation
was 313 K. The resulting solution was recovered by centrifugation and
analyzed by GC-FID. For the TPT experiment, a MeCN solution (15 ml)
containing TPT (7.5 mmol) was used for the reaction.
10 (a) V. Ramamurthy, D. F. Eaton and J. V. Casper, Acc. Chem. Res.,
1992, 25, 299; (b) J. C. Scaiano and H. Garc´ıa, Acc. Chem. Res., 1999,
32, 783; (c) C.-H. Tung, L.-Z. Wu, L.-P. Zhang and B. Chen, Acc.
Chem. Res., 2003, 36, 39; (d) J. Sivaguru, A. Natarajan,
L. S. Kaanumalle, J. Shailaja, S. Uppili, A. Joy and V. Ramamurthy,
Acc. Chem. Res., 2003, 36, 509; (e) V. Ramamurthy, J. Shailaja,
L. S. Kaanumalle, R. B. Sunoj and J. Chandrasekhar, Chem. Commun.,
2003, 1987; (f) A. Maldotti, A. Molinari and R. Amadelli, Chem. Rev.,
2002, 102, 3811.
11 (a) F. Gessner, A. Olea, J. H. Lobaugh, L. J. Johnston and J. C. Scaiano,
J. Org. Chem., 1989, 54, 259; (b) M. V. Baldov´ı, A. Corma, H. Garc´ıa
and V. Mart´ı, Tetrahedron Lett., 1994, 35, 9447; (c) T. Wada,
M. Shikimi, Y. Inoue, G. Lem and N. J. Turro, Chem. Commun.,
2001, 1864; (d) A. Joy, S. Uppili, M. R. Netherton, J. R. Scheffer and
V. Ramamurthy, J. Am. Chem. Soc., 2000, 122, 728; (e) L. Brancaleon,
D. Brousmiche, V. J. Rao, L. J. Johnston and V. Ramamurthy, J. Am.
Chem. Soc., 1998, 120, 4926; (f) C.-H. Tung, H. Wang and Y.-M. Ying,
J. Am. Chem. Soc., 1998, 120, 5179; (g) N. J. Turro and P. Wan, J. Am.
Chem. Soc., 1985, 107, 678; (h) P. Calza, C. Paze´, E. Pelizzetti and
A. Zecchina, Chem. Commun., 2001, 2031; (i) Y. Shiraishi, N. Saito and
T. Hirai, J. Am. Chem. Soc., 2005, 127, 8304.
12 Y. Shiraishi, Y. Teshima and T. Hirai, Chem. Commun., 2005, 4569.
13 Neither oxygenation nor dimerization occurred when HY zeolite and
olefin were stirred in MeCN at 313 K with and without photoirradia-
tion. However, thermal dimerization occurs in CCl4 or CH2Cl2 at
ambient temperature: (a) A. Benito, A. Corma, H. Garc´ıa and J. Primo,
Appl. Catal., A, 1994, 116, 127; (b) K. B. Yoon, J. L. Lim and
J. K. Kochi, J. Mol. Catal., 1989, 52, 375.
1 Oxidations in Organic Chemistry, ed. M. Hudlicky, American Chemical
Society, Washington, DC, 1990.
2 (a) R. S. Drago, B. B. Corden and C. W. Barnes, J. Am. Chem. Soc.,
1986, 108, 2453; (b) K. Kaneda, S. Haruna, T. Imanaka and
K. Kawamoto, J. Chem. Soc., Chem. Commun., 1990, 1467; (c)
X. Baucherel, J. Uziel and S. Juge´, J. Org. Chem., 2001, 66, 4505; (d)
D. H. R. Barton, K. W. Lee, W. Mehl, N. Ozbalik and L. Zhang,
Tetrahedron, 1990, 46, 3753; (e) M. T. Reetz and K. To¨llner,
Tetrahedron Lett., 1995, 36, 9461.
14 F. L. Cozens, R. Bogdanova, M. Re´gimbald, H. Garc´ıa, V. Mart´ı and
J. C. Scaiano, J. Phys. Chem. B, 1997, 101, 6921.
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 773–775 | 775