Please do not adjust margins
Catalysis Science & Technology
DOI: 10.1039/C7CY00932A
ARTICLE
Journal Name
temperature under an inert atmosphere for 6 hours. Then solvent Organomet. Chem. 1985, 282, C7; (d) S. Murahashi, T. Naota, K.
was removed under vacuum. Solubilizing the complex with i. Ito, Y. Maeda and H. Taki, J. Org. Chem., 1987, 52, 4319.
6
(a) J. Zhang, G. Leitus, Y. Ben-David and D. Milstein, J. Am.
dichloromethane and cannula filtration after removed the insoluble
KCl. Removal of solvent from the filtrate afforded the desired faint
yellow complex with 75% yield (37mg, 0.05 mmol). Recrystallization
of the complex by slow diffusion of pentane in dichloromethane
Chem. Soc., 2005, 127, 10840; (b) A. Solvhoj and R. Madsen,
Organometallics, 2011, 30, 6044; (c) D. Spasyuk and D. Gusev,
Organometallics, 2012, 31, 5239; (d) M. Nielsen, H. Junge, A.
Kammer and M. Beller, Angew. Chem. Int. Ed., 2012, 51, 5711.
1
furnished crystals suitable for X-ray diffraction studies. H NMR (400
7
Selected recent reports on base free hydrogenation of CO
a) S. Moret, P. J. Dyson and G. Laurenczy, Nat. Commun., 2014,
, 4017 ; (b) K. Sordakis, A. Tsurusaki, M. Iguchi, H. Kawanami, Y.
Himeda and G. Laurenczy, Chem. Eur. J., 2016, 22, 15605; (c) S.-
5.8 Hz, J = 8.8 Hz, 1H), 2.02 (s, 3H); P { H} NMR (162 MHz, M. Lu, Z. Wang, J. Li, J. Xiao and C. Li, Green Chem., 2016, 18
2
:
MHz, CD
.30-7.23 (m, 5H), 7.17-7.05 (m, 13H), 6.99-6.95 (m, 1H), 6.13-6.06
m, 3H), 5.83 (d, J = 8.5 Hz, 1H), 3.46-3.23 (m, 3H), 2.75 (dd, J
2 2
Cl ): δ 12.22 (br, 2H), 7.53-7.50 (m, 1H), 7.42-7.38 (m, 2H),
(
5
7
(
1
1
=
3
1
1
,
2
CD
TOF): calc’d for C H N O P Ru [M+H+H O] 728.1164; found
2 2
Cl
): δ 67.08 (d, J = 28.5 Hz), 48.95 (d, J = 29.2 Hz); HRMS(ESI- 4553; (d) K. Rohmann, J. Kothe, M. W. Haenel, U. Englert, M.
+
Hölscher and W. Leitner, Angew. Chem. Int. Ed., 2016, 55, 8966.
Selected references on 2-pyridone ligands : (a) K.-i. Fujita, N.
Tanino and R. Yamaguchi, Org. Lett., 2007, , 109; (b) A. M.
Royer, T. B. Rauchfuss and D. L. Gray, Organometallics, 2010, 29
763; (c) I. Nieto, M. S. Livings, J. B. Sacci III, L. E. Reuthers, M.
A clean and dry Schlenk tube (5mL) was charged with complex Ru-2 Zeller and E. T. Papish, Organometallics, 2011, 30, 6339; (d) R.
0.005 mmol, 1 mol%) in degassed toluene (0.5 mL). NaOH (0.05 Kawahara, K.-i. Fujita and R. Yamaguchi, Angew. Chem. Int. Ed.,
3
8
34
3
2
2
2
8
728.1172.
9
General procedure for the dehydrogenation
,
6
(
mmol, 10 mol%) was added to this opaque yellow solution. After 2012, 51, 12790; (e) S. Zeyneb, B. Sundararaju, M. Achard and C.
stirring for 5 minutes, the appropriate alcohol (0.5 mmol) was Bruneau, Green Chem, 2013, 15, 775; (f) C. M. Moore and N. K.
Szymczak, Chem. Commun., 2013, 49, 400; (g) S. Chakraborty, P.
E. Piszel, W. B. Brennessel and W. D. Jones, Organometallics,
mixed. This reaction mixture was stirred in a preheated oil bath at
150 °C. The reaction was monitored by TLC and GC. After the
2
ACS Catal., 2016, , 1981; (i) J. Shi, B. Hu, D. Gong, S. Shang, G.
015, 34, 5203; (h) C. M. Moore, B. Bark and N. K. Szymczack,
6
completion of the reaction, the reaction mixture was cooled to
room temperature and solvent was evaporated. The crude reaction
mixture was purified by silica gel column chromatography using
petroleum ether and ethyl acetate mixture as eluent to get the
desired ester.
Hou and D. Chen, Dalton Trans., 2016, 45, 4828; (j) E. W. Dahl, T.
Louis-Goff and N. Szymczack, Chem. Commun., 2017, 53, 2287;
(
k) L. Wang, N. Onishi, K. Murata, T. Hirose, J. T. Muckerman, E.
Fujita and Y. Himeda, ChemSusChem, 2017, 10 , 1071; (l) S. Y. de
Boer, T. J. Korstanje, S. R. La Rooij, R. Kox, J. N. H. Reek and J. I.
van der Vlugt, Organometallics, 2017, 36, 1541.
General procedure for the formic acid generation
9
(a) K. Mashima, H. Nakano and A. Nakamura, J. Am. Chem.
Degassed dimethyl sulfoxide (4 mL) and Ru-1 (5 mg, 6.59 µmol)
were added in a 20 mL autoclave. The reactor was sealed, applied
vacuum, then filled with argon (ten cycles) and then ended with
vacuum. Carbon dioxide was introduced at 10 bar and the mixture
was stirred at this pressure for 5 minutes. Then, molecular
hydrogen was introduced under stirring at an initial pressure of 20
Soc., 1993, 115, 11632; (b) B. Breit and W. Seiche, J. Am. Chem.
Soc., 2003, 125, 6608.
1
0 H. Brunner, A. Köllnberger, A. Mehmood, T. Tsuno and M.
Zabel, J. Organomet. Chem., 2004, 689, 4244.
1 (a) F. Jiang, M. Achard, V. Dorcet, T. Roisnel and C. Bruneau,
1
Eur. J. Inorg. Chem., 2015, 4312; (b) A. R. Sahoo, F. Jiang, C.
Bruneau, G. V. M. Sharma, S. Suresh and M. Achard, RSC Adv.,
bar and slowly increased to reach a total pressure of 60 bar (pH
2
~
5
0 bar). The resulting mixture was then stirred at 50 °C for 16h. 2016, 6, 100554.
After, the autoclave was cooled down to room temperature. Then 12 T. Miura, I. E. Held, S. Oishi, M. Naruto and S. Saito,
Tetrahedron Lett., 2013, 54, 2674.
1
the unreacted hydrogen and CO were carefully released. Addition
2
3 (a) C. Gunanathan, L. J. W. Shimon and D. Milstein, J. Am.
Chem. Soc., 2009, 131, 3146; (b) E. Kossoy, Y. Diskin-Posner, G.
Leitus and D. Milstein, Adv. Synth. Catal., 2012, 354, 497.
of 100 µL of dimethylformamide followed by stirring for three
1
minutes and analysis by H NMR (within 30 mins) allowed the
determination of the turnover number and formic acid
concentration.
1
4 (a) T. Ito, H. Horino, Y. Koshiro and A. Yamamoto, Bull. Chem.
Soc. Jpn., 1982, 55, 504.;(b) M.-O. Simon and S. Darses, Adv.
Synth. Catal.¸2010, 352, 305; (c) S. A. Morris and D. Gusev,
Angew. Chem. Int. Ed., 2017, 56, 6228.
Aknowledgments
CEFIPRA/IFCPAR N° 5105-4 is acknowledged for a fellowship to
A.R.S. and the funding of this project.
1
5 J. Cheng, M. Zhu, C. Wang, J. Li, X. Jiang, Y. Wei, W. Tang, D.
Xue and J. Xiao, Chem. Sci., 2016, , 4428.
6 A. Dubey and E. Khaskin, ACS Catal., 2016,
7
1
6, 3998.
Notes and references
17 For an anionic iridium species involving pyridone ligand see:
K.-i. Fujita, R. Kawahara, T. Aikawa and R. Yamaguchi, Angew.
Chem. Int. Ed., 2015, 54, 9057.
1
(a) M. Trincado, D. Banerjee and H. Grützmacher, Energy
Environ. Sci., 2014, , 2464; (b) R. H. Crabtree, Chem. Rev., 2017,
DOI : 10.1021/acs.chemrev.6b00556.
7
1
8 For comparison with previously reported complexes under
base and additive free conditions, ref. 7a: [HCO H]= 1.93 M p
tot= 100 bar, 120h; ref. 7b: [HCO H]= 0.1 M p tot= 50 bar, 50h,
ref. 7c [HCO H]= 0.12 M p tot= 50 bar, 30mins ; ref. 7d :
HCO H]= 0.33 M ptot= 120 bar, 16h
2
2
1
(a) J. Eppinger and K. -W. Huang, ACS Energy Lett., 2017,
88; (b) J. Klankermayer, S. Wesselbaum, K. Beydoun and W.
2,
2
2
Leitner, Angew. Chem. Int. Ed. 2016, 55, 7296.
[
2
3
3
4
2
5
2
M. Aresta, A. Dibenedetto and E. Quaranta, J. Catal., 2016,
43, 2.
J. R. Khusnutdinova and D. Milstein, Angew. Chem. Int. Ed.,
015, 54, 12236.
(a) Y. Blum, D. Reshef and Y. Shvo, Tetrahedron Lett., 1981,
2
, 1541; (b) S. -I. Murahashi, K. -i. Ito, T. Naota and Y. Maeda,
Tetrahedron Lett., 1981, 22, 5327; (c) Blum, Y.; Shvo, Y. J.
6
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins