RSC Advances
Paper
with lower total oxygen content and higher hydrogen content. At 13 A. J. Foster, P. T. M. Do and R. F. Lobo, Top. Catal., 2012, 55,
higher temperatures, the mobility of metal species increases, 118–128.
and they have greater chance to overcome the energy barrier, 14 E. F. Iliopoulou, E. V. Antonakou, S. A. Karakoulia,
resulting in the faster reaction rate. In turn, pressure has
a signicant impact on both the conversion of model chemicals
I. A. Vasalos, A. A. Lappas and K. S. Triantafyllidis, Chem.
Eng. J., 2007, 134, 51–57.
and the distribution of the main products. Higher degrees of 15 M. Mohammad, H. T. Kandaramath, Z. Yaakob,
conversion of model molecules at higher pressures are natural.
More hydrogen gas is present in the reaction environment,
S. Y. Chandra and K. Sopian, Renewable Sustainable Energy
Rev., 2013, 22, 121–132.
which means that more hydrogen molecules are bound to the 16 P. M. Mortensen, J.-D. Grunwaldt, P. A. Jensen,
active phase and react with the substrate.
K. G. Knudsen and A. D. Jensen, Appl. Catal., A, 2011, 407,
1–19.
The ordered mesoporous silica materials with appropriate
structural parameters have a wide range of potential applica- 17 P. D˛ebek, A. Feliczak-Guzik and I. Nowak, Przem. Chem.,
tions. With this in mind, we are inclined to assume that these 2016, 95/11, 2259–2263.
materials can be used in the near future in catalytic production 18 Y.-C. Lin, C.-L. Li, H.-P. Wan, H.-T. Lee and C.-F. Liu, Energy
of biofuels, and thus they are benecial for the environmental
Fuels, 2011, 25, 890–896.
´
protection.
19 L. Faba, E. Dia and S. Ordonez, Renewable Sustainable Energy
Rev., 2015, 51, 273–287.
ˇ
´
´
´
´
20 D. Prochazkowa, P. Zamostn´y, M. Bejblova, L. Cerven´y and
Conflicts of interest
ˇ
J. Cejka, Appl. Catal., A, 2007, 332, 56–64.
There are no conicts to declare.
21 F. Cheng and C. E. Brewer, Renewable Sustainable Energy
Rev., 2017, 72, 673–722.
22 Z. He and X. Wang, Catal. Sustainable Energy, 2012, 1, 28–52.
23 A. S. Ouedraogo and P. R. Bhoi, J. Cleaner Prod., 2020, 253, 1–
19.
Acknowledgements
This work was supported by the National Science Centre
(project no: DEC 2013/10/M/ST5/00652).
24 J. L. Santos, M. Alda-Onggar, V. Fedorov, M. Peurla,
´
¨
¨
K. Ekrane, P. Maki-Arvela, M. A. Centeno and
D. Y. Murzin, Appl. Catal., A, 2018, 561, 137–149.
References
ˇ
´ˇ
´
´
´
ˇ
25 J. Horacek, G. St’avova, V. Kelbichova and D. Kubicka, Catal.
1 F. Saladini, N. Patrizi, F. M. Poudyal, N. Marchettini and
Today, 2013, 204, 38–45.
S. Bastianoni, Renewable Sustainable Energy Rev., 2016, 66, 26 B. Pawelec, C. V. Loricera, C. Geantet, N. Mota, J. L. G. Fierro
221–227. and R. M. Navarro, Mol. Catal., 2020, 482, 1–9.
2 M. V. Rodionova, R. S. Poudyal, I. Tiwari, R. A. Voloshin, 27 M. S. Zanuttini, M. Gross, G. Marchetti and C. Querini, Appl.
S. K. Zharmukhamedov, H. G. Nam, B. K. Zayadan, Catal., A, 2019, 587, 1–12.
B. D. Bruce, H. J. M. Hou and S. I. Allakhverdiev, Int. J. 28 S. Chen, G. Zhou and C. Miao, Renewable Sustainable Energy
Hydrogen Energy, 2017, 42, 8450–8461.
Rev., 2019, 101, 568–589.
3 T. Damartzis and A. Zabaniotou, Renewable Sustainable 29 P. Kluson and L. Cerveny, Appl. Catal., A, 1995, 128, 13–31.
Energy Rev., 2011, 15, 366–378.
4 S. N. Naik, V. V. Goud, P. K. Rout and A. K. Dalai, Renewable
Sustainable Energy Rev., 2010, 14, 578–597.
5 S. Kaur, R. Sharma and S. Bansal, International Journal of
Innovative Research in Science & Engineering, 2017, 3, 477–489.
30 N. Arun, R. V. Sharma and A. K. Dalai, Renewable Sustainable
Energy Rev., 2015, 48, 240–255.
31 A. M. Barrios, C. A. Teles, P. M. de Souza, R. C. Rabelo-Neto,
G. Jacobs, B. H. Davis, L. E. P. Borges and F. B. Noronha,
Catal. Today, 2018, 302, 115–124.
6 F. Cheng and C. E. Brewer, Renewable Sustainable Energy 32 M. Lu, H. Du, B. Wei, J. Zhu, M. Li, Y. Shan and C. Song,
Rev., 2017, 72, 673–722.
Energy Fuels, 2017, 31, 10858–10865.
7 T. Demura and Z.-H. Ye, Curr. Opin. Plant Biol., 2010, 13, 299– 33 C. Zhao, J. He, A. A. Lemonidou, X. Li and J. A. Lercher, J.
304. Catal., 2011, 280, 8–16.
8 Y. Wang, T. He, K. Liu, J. Wu and Y. Fang, Bioresour. Technol., 34 A. Feliczak-Guzik, P. Szczyglewska and I. Nowak, Catal.
2012, 108, 280–284. Today, 2019, 325, 61–67.
9 A. Sharma, V. Pareek and D. Zhang, Renewable Sustainable 35 C. Newman, X. Zhou, B. Goundie, I. T. Ghampson,
Energy Rev., 2015, 50, 1081–1096.
10 P. Roy and G. Dias, Renewable Sustainable Energy Rev., 2017,
77, 59–69.
R. A. Pollock, Z. Ross, M. C. Wheeler, R. W. Meulenberg,
R. N. Austin and B. G. Frederick, Appl. Catal., A, 2014, 477,
64–74.
11 T. M. H. Dabros, M. Z. Stummann, M. Høj, P. A. Jensen, 36 G. Yao, G. Wu, W. Dai, N. Guan and L. Li, Fuel, 2015, 150,
J. D. Grunwaldt, J. Gabrielsen, P. M. Mortensen and
A. D. Jensen, Prog. Energy Combust. Sci., 2018, 68, 268–309.
12 M. Sharifzadeh, C. J. Richard, K. Liu, K. Hellgardt,
175–183.
37 P. Szczyglewska, A. Feliczak-Guzik and I. Nowak, Microporous
Mesoporous Mater., 2020, 293, 1–6.
D. Chadwick and N. Shah, Biomass Bioenergy, 2015, 76, 38 Z. He, M. Hu and X. Wang, Catal. Today, 2018, 302, 136–145.
108–117.
9516 | RSC Adv., 2021, 11, 9505–9517
© 2021 The Author(s). Published by the Royal Society of Chemistry