C O M M U N I C A T I O N S
Figure 3. A series of 23Na NMR spectra 10 min after addition of (a)
metathesis product 3, (b) G 1, (c) DMSO blank, and (d) gramicidin to a
solution of EYPC liposomes (200 nm) that initially contained 100 mM LiCl,
10 mM lithium phosphate suspended in an extravesicular buffer containing
100 mM NaCl, 10 mM sodium phosphate. Transport of Na+ across the
bilayer is indicated by a 23Na NMR peak at δ 0.24 ppm.
Figure 2. Transport of Na+ as determined in a pH gradient assay. EYPC
liposomes (100 nm) containing HPTS dye (0.1 mM) in 100 mM NaCl, 10
mM sodium phosphate (pH 6.1) were suspended in 100 mM NaCl, 10 mM
sodium phosphate (pH 6.1). The compounds, G 1, G-quadruplex 3, or
gramicidin, were added at t ) 0 s as DMSO solutions to give a 1:100 ligand-
to-lipid ratio. The addition of NaOH solution at t ) 40 s established a pH
gradient of about 1 pH unit. At t ) 430 s the liposomes were destroyed
with Triton-X detergent. Measurement of the fluorescence of the trianionic
and tetraanionic forms of HPTS dye allowed determination of the liposomal
pH.
ions across phospholipid bilayer membranes. We are now focused
on determining the cation selectivity (Na+ vs K+) and mechanism
of transport (carrier vs channel) for this transmembrane ion
transporter.
contain liposomes, indicating that G 3 is either unstructured or
insoluble in aqueous solution.
Acknowledgment. We thank the Department of Energy (BES,
Separations and Analysis Program) for financial support.
Having shown that metathesis product [G]16 3 forms a G-
quadruplex in phospholipid liposomes, we next evaluated its ability
to function as a transmembrane ion transporter. Initial studies used
a standard base-pulse assay to indirectly measure Na+ transport
across liposomal membranes.15 Liposomes (100 nm) containing the
pH-sensitive dye, HPTS, were suspended in a solution of 75 mM
Na2SO4, 10 mM sodium phosphate (pH ) 6.0). As shown in Figure
2, addition of exogeneous base led to a rapid increase in the internal
pH of these liposomes when they were in the presence of metathesis
product [G]16 3 (1 mol %). In sharp contrast, no pH change occurred
when either G 1 or the noncovalent assembly [G 1]16‚4K+‚4DNP-
was added to the HPTS-loaded liposomes. Gramicidin was a
positive control in these experiments. The pH increase mediated
by [G]16 3 is consistent with Na+ influx across the phospholipid
bilayer.
Direct evidence for transmembrane cation transport down a Na+
concentration gradient, as facilitated by unimolecular G-quadruplex
3, was obtained from 23Na NMR experiments.16 EYPC liposomes
(200 nm) containing 130 mM LiCl in 10 mM lithium phosphate
(pH ) 6.4) were suspended in a solution containing 100 mM NaCl,
10 mM sodium phosphate (pH ) 6.4). Addition of the NMR shift
reagent, Dy(PPPi)2-7, caused the “outer” 23Na peak to move upfield
to δ -7.00, distinguishing it from any “internal” 23Na at δ 0.24.
After incubation of the LiCl-filled liposomes with the metathesis
product [G]16 3 (0.1 mol %) for 10 min, 23Na NMR analysis showed
that equilibrium had been achieved between the internal and external
Na+ populations (Figure 3). Importantly, under the same conditions
no Na+ transport was mediated by the precursor G 1 or the
noncovalent assembly 2 [G 1]16‚4K+‚4DNP- (1 mol %). Again,
gramicidin served as a positive control in these Na+ transport
experiments.
Supporting Information Available: Experimental protocols and
selected spectroscopic data. This material is available free of charge
References
(1) Reviews: (a) Sessler, J. L.; Jayawickramarajah, J. Chem. Commun. 2005,
1939. (b) Sivakova, S.; Rowan, S. J. Chem. Soc. ReV. 2005, 34, 9.
(2) Davis, J. T. Angew. Chem., Int. Ed. 2004, 43, 668.
(3) (a) Chen, L.; Sakai, N.; Moshiri, S. T.; Matile, S. Tetrahedron Lett. 1998,
39, 3627. (b) Datta, B.; Bier, M. E.; Roy, S.; Armitage, B. A. J. Am.
Chem. Soc. 2005, 127, 4199. (c) Krishnan-Ghosh, Y.; Stephens, E.;
Balasubramanian, S. J. Am. Chem. Soc. 2004, 126, 13895.
(4) For discussion of the ion channel nature of DNA G-quadruplexes: (a)
Hud, N. V.; Schultze, P.; Sklenar, V.; Feigon, J. J. Mol. Biol. 1999, 285,
233. (b) Wong, A.; Wu, G. J. Am. Chem. Soc. 2003, 125, 13895. (c)
Wong, A.; Ida, R.; Wu, G. Biochem. Biophys. Res. Commun. 2005, 337,
363.
(5) For other covalent modifications of G-quartets: (a) Sreenivasachary, N.;
Lehn, J.-M Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 5938. (b) Krishnan-
Ghosh, Y.; Whitney, A. M.; Balasubramanian, S. Chem. Commun. 2005,
3068.
(6) For a review: Matile, S.; Som, A.; Sorde, N. Tetrahedron 2004, 60, 6405.
(7) Forman, S. L.; Fettinger, J. C.; Pieraccini, S.; Gottarelli, G.; Davis, J. T.
J. Am. Chem. Soc. 2000, 122, 4060.
(8) Urry, D. W. Biochim. Biophys. Acta 1972, 265, 115.
(9) Kaucher, M. S.; Lam, Y. F.; Pieraccini, S.; Gottarelli, G.; Davis, J. T.
Chem. Eur. J. 2005, 11, 164.
(10) For examples of olefin metathesis fixing noncovalent assemblies: (a)
Clark, T. D.; Ghadiri, M. R. J. Am. Chem. Soc. 1995, 117, 12364. (b)
Cardullo, F.; Calama, M. C.; Snellink-Ruel, B. H. M.; Weidmann, J. L.;
Bielejewska, A.; Fokkens, R.; Nibbering, N. M. M.; Timmerman, P.;
Reinhoudt, D. N. Chem. Commun. 2000, 367. (c) Wang, L. Y.; Vysotsky,
M. O.; Bogdan, A.; Bolte, M.; Bo¨hmer, V. Science 2004, 304, 1312.
(11) Gottarelli, G.; Masiero, S.; Spada, G. P. Enantiomer 1998, 3, 429.
(12) For a review on diffusion NMR in supramolecular chemistry: Cohen,
Y.; Avram, L.; Frish, L. Angew. Chem., Int. Ed. 2005, 44, 520.
(13) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953.
(14) For a recent example where CD was used to detect a supramolecular
assembly in a membrane: ten Cate, M. G. J.; Crego-Calama, M.;
Reinhoudt, D. N. J. Am. Chem. Soc. 2004, 126, 10840.
(15) (a) Kano, K.; Fendler, J. H. Biochim. Biophys. Acta 1978, 509, 289. (b)
Sakai, N.; Brennan, K. C.; Weiss, L. A.; Matile S. J. Am. Chem. Soc.
1997, 119, 8726.
(16) (a) Gupta, R. K.; Gupta P. Biophys. J. 1982, 37, 76. (b) Pike, M. M.;
Simon, S. R.; Balschi, J. A.; Springer, C. S. Proc. Natl. Acad. Sci. U.S.A.
1982, 79, 810.
In conclusion, we have used a strategy that combines noncovalent
synthesis and covalent capture to prepare a functional supramo-
lecular assembly, unimolecular G-quadruplex 3, in just two steps
from a guanosine derivative. The unimolecular G-quadruplex 3
apparently folds into a conformation that allows it to transport Na+
JA056888E
9
J. AM. CHEM. SOC. VOL. 128, NO. 1, 2006 39