7516
W. Yang et al. / Bioorg. Med. Chem. 17 (2009) 7510–7516
surface of hepatocyte membrane was occupied. The followed
radiotracers would not uptake by the liver through receptor-med-
iated, and circulated in the blood. The tracers were absorbed by
other organs slowly, metabolized and excreted eventually. The re-
sult of metabolic analysis and ex vivo biodistribution show that the
the risk of liver surgery and help determining the surgical
procedures.
Acknowledgments
[
18F]FNGA has high affinity with the ASGP receptor, and its uptake
The Project was sponsored by the Scientific Research Founda-
tion for the Returned Overseas Chinese Scholars, State Education
Ministry, and partly by the National Natural Science Foundation
of China (20871020) and Beijing Natural Science Foundation
(2092018). The authors will also thank Professor Boli Liu for his
valuable discussion and guidance.
in the liver via receptor-mediated.
The in vivo microPET evaluation of [18F]FNGA was observed
with high liver accumulation and a certain retention. The liver up-
take was decreased significantly after blocking with free NGA. The
block group shows high kidney uptake, and the high radioactivity
concentration in urinary bladder can also be seen after 15 min
(not show in Fig. 4). The result of microPET coincides with
ex vivo biodistribution. Both of the blocking experiments results
indicated high affinity of [18F]FNGA with the ASGP receptor.
It has been reported several models for quantitative evaluation
of liver function using 99mTc-GSA. Recently 99mTc-GSA has been
applied to quantitative evaluation of regional liver function and
estimation of residual liver function in candidates for hepatec-
tomy.18–20 Regional evaluation requires more accuracy and finer
resolution. Comparing with SPECT, PET has higher resolution, espe-
cially when combining with CT technologies which improves the
reconstruction and visualization of data. The novel PET tracer
References and notes
1. Kokudo, N.; Vera, D. R.; Makuuchi, M. Nucl. Med. Biol. 2003, 30, 845.
2. Stadalnik, R. C.; Vera, D. R. Nucl. Med. Biol. 2001, 28, 499.
3. Vera, D. R.; Stadalnik, R. C.; Krohn, K. A. J. Nucl. Med. 1985, 26, 1157.
4. Kubota, Y.; Kojima, M.; Hazama, H.; Kawa, S.; Nakazawa, M.; Nishiyama, Y.;
Nakagawa, S.; Murase, T.; Okuno, H.; Naitoh, Y., et al Jpn. J. Nucl. Med. 1986, 23,
899.
5. Torizuka, K.; Ha-Kawa, S. K.; Ikekubo, K.; Suga, Y.; Tanaka, Y.; Hino, M.; Ito, H.;
Yamamoto, K.; Yonekura, Y. Jpn. J. Nucl. Med. 1991, 28, 1321.
6. Wakisaka, K.; Arano, Y.; Uezono, T.; Akizawa, H.; Ono, M.; Kawai, K.; Ohomomo,
Y.; Nakayama, M.; Saji, H. J. Med. Chem. 1997, 40, 2643.
7. Arano, Y.; Mukai, T.; Akizawa, H.; Uezono, T.; Motonari, H.; Wakisaka, K.;
Kairiyama, C.; Yokoyama, A. Nucl. Med. Biol. 1995, 22, 555.
8. Vera, D. R. J. Nucl. Med. 1992, 33, 1160.
9. Guhlke, S.; Coenen, H. H.; Stöcklin, G. Appl. Radiat. Isot. 1994, 45, 715.
10. Zhang, X.; Cai, W.; Cao, F.; Schreibmann, E.; Wu, Y.; Wu, J. C.; Xing, L.; Chen, X. J.
Nucl. Med. 2006, 47, 492.
[
18F]FNGA has good biological properties which may provide
future applications for assessment of hepatocyte function with
PET-CT. It is possible to functionally simulate the extension of he-
patic resection and predict to some extent postoperative outcomes
related to liver function.
11. Zhang, X.; Xiong, Z.; Wu, Y.; Cai, W.; Tseng, J. R.; Gambhir, S. S.; Chen, X. J. Nucl.
Med. 2006, 47, 113.
12. DuBois, M.; Gilles, K. A.; Hamilton, J. K.; Rebers, P. A.; Smith, F. Anal. Chem.
1956, 28, 350.
13. Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501.
14. Gore, S.; Morris, A. I.; Gilmore, I. T.; Maltby, P. J.; Thornback, J. R.; Billington, D.
J. Nucl. Med. 1991, 32, 506.
15. Duncan, J. R.; Welch, M. J. J. Nucl. Med. 1993, 34, 1728.
16. Arano, Y.; Mukai, T.; Uezono, T.; Wakisaka, K.; Motonari, H.; Akizawa, H.;
Taoka, Y.; Yokoyama, A. J. Nucl. Med. 1994, 35, 890.
17. Ono, M.; Arano, Y.; Uehara, T.; Fujioka, Y.; Ogawa, K.; Namba, S.; Mukai, T.;
Nakayama, M.; Saji, H. Bioconjugate Chem. 1999, 10, 386.
18. Hwang, E.-. H.; Taki, J.; Shuke, N.; Nakajima, K.; Kinuya, S.; Konishi, S.;
Michigishi, T.; Aburano, T.; Tonami, N. J. Nucl. Med. 1999, 40, 1644.
19. Sugai, Y.; Komatani, A.; Hosoya, T.; Yamaguchi, K. J. Nucl. Med. 2000, 41, 421.
20. Shuke, N.; Okizaki, A.; Kino, S.; Sato, J.; Ishikawa, Y.; Zhao, C.; Kinuya, S.;
Watanabe, N.; Yokoyama, K.; Aburano, T. J. Nucl. Med. 2003, 44, 475.
5. Conclusion
This study demonstrates the successful coupling of galactosyl-
neoglycoalbumin with positron-emitting radionuclide 18F through
the prosthetic labeling group [18F]SFB. [18F]FNGA has initial high
activity accumulation in liver via ASGP receptor-mediated. The
other tissues show low radioactivity accumulation. High liver/
background ratio affords promising biological properties to get
clear images. PET imaging with [18F]FNGA may provide quantita-
tive information and better resolution. That is the first report of
18F labeled probe for ASGP receptor PET imaging so far as we know.
That could be an important tool for quantificational evaluation of