solution as monomers or dimers.11 This is in stark contrast to
lithium amides that are known to display a complex mixture of
oligomeric forms that can have markedly different reactivity
and selectivity profiles.12b,c Considering the small difference in
selectivity of complex (R,R)-8 across the temperature range
applied, at present we postulate that the aggregation state of
this magnesium bisamide does not differ drastically from
ꢀ78 to ꢀ20 1C. As such, the structurally robust nature of this
magnesium species serves to permit ‘‘warming’’ of the base
solution without significant decomposition, and the observed
temperature independence of the solution structure enables
comparable selectivity at considerably more elevated tempera-
tures. The exact nature of the active species is currently under
investigation.
J. Org. Chem., 2010, 75, 2131; (f) S. C¸
alimsiz, M. Sayah, D. Mallik
and M. G. Organ, Angew. Chem., Int. Ed., 2010, 49, 2014.
6 For a review, see: N. S. Simpkins, Top. Stereochem., 2010, 26, 1.
7 For the use of enol silanes in organic synthesis, see:
(a) P. Brownbridge, Synthesis, 1983, 1; (b) P. Brownbridge, Synth-
esis, 1983, 85; (c) S. Kobayashi, K. Manabe, H. Ishitani and
J.-I. Matsuo, Silyl Enol Ethers in Science of Synthesis, ed.
I. Fleming, Thieme, Stuttgart, 2001, vol. 4, p. 317.
8 For examples of effective chiral lithium amide bases, see:
(a) R. Shirai, M. Tanaka and K. Koga, J. Am. Chem. Soc., 1986,
108, 543; (b) R. P. C. Cousins and N. S. Simpkins, Tetrahedron
Lett., 1989, 30, 7241; (c) K. Aoki, H. Noguchi, K. Tomioka and
K. Koga, Tetrahedron Lett., 1993, 34, 5105; (d) B. J. Bunn and
N. S. Simpkins, J. Org. Chem., 1993, 58, 533; (e) B. J. Bunn,
P. J. Cox and N. S. Simpkins, Tetrahedron, 1993, 49, 207;
(f) R. Shirai, D. Sato, K. Aoki, M. Tanaka, H. Kawasaki and
K. Koga, Tetrahedron, 1997, 53, 5963; (g) K. Aoki and K. Koga,
Tetrahedron Lett., 1997, 38, 2505; (h) V. K. Aggarwal,
P. S. Humphries and A. Kenwick, J. Chem. Soc., Perkin Trans.
1, 1999, 2883; (i) C.-D. Graf, C. Malan and P. Knochel, Angew.
Chem., Int. Ed., 1998, 37, 3014; (j) C.-D. Graf, C. Malan,
K. Harms and P. Knochel, J. Org. Chem., 1999, 64, 5581;
(k) K. Aoki and K. Koga, Chem. Pharm. Bull., 2000, 48, 571;
(l) J. Busch-Petersen and E. J. Corey, Tetrahedron Lett., 2000, 41,
6941.
In summary, utilising unique properties characteristic of
magnesium amides, we have successfully developed a novel
C2-symmetric magnesium bisamide and demonstrated its
unique ability to function efficiently within asymmetric
deprotonation reactions. Significantly, this new reagent operates
extremely effectively at ꢀ78 1C, as well as the substantially
more elevated ꢀ20 1C, maintaining very good levels of
asymmetric efficiency and thereby presenting significant
opportunities for energy conservation in this arena. Following
these studies, we are currently focused on the development of
further new chiral magnesium-centred bases to enable highly
selective processes at ambient temperature.
9 For examples, see: D. M. Hodgson, A. R. Gibbs and G. P. Lee,
Tetrahedron, 1996, 52, 14361. See also ref. 6.
10 (a) K. W. Henderson, W. J. Kerr and J. H. Moir, Chem. Commun.,
2000, 479; (b) K. W. Henderson, W. J. Kerr and J. H. Moir,
Synlett, 2001, 1253; (c) K. W. Henderson, W. J. Kerr and
J. H. Moir, Chem. Commun., 2001, 1722; (d) J. D. Anderson,
P. Garcıa Garcıa, D. Hayes, K. W. Henderson, W. J. Kerr,
´ ´
J. H. Moir and K. P. Fondekar, Tetrahedron Lett., 2001, 42,
7111; (e) K. W. Henderson, W. J. Kerr and J. H. Moir, Tetra-
hedron, 2002, 58, 4573; (f) E. L. Carswell, D. Hayes,
K. W. Henderson, W. J. Kerr and C. J. Russell, Synlett, 2003,
1017; (g) M. J. Bassindale, J. J. Crawford, K. W. Henderson and
W. J. Kerr, Tetrahedron Lett., 2004, 45, 4175.
We thank the EPSRC for funding (M.M.; EP/C548981/1)
and the EPSRC Mass Spectrometry Service, University of
Wales, Swansea, for analyses. We are also extremely grateful
to Prof. Dr Klaus Ditrich (BASF SE, Ludwigshafen) for a
generous supply of chiral amines.
11 (a) P. E. Eaton, H. Higuchi and R. Millikan, Tetrahedron Lett.,
1987, 28, 1055; (b) P. E. Eaton, C. H. Lee and Y. Xiong, J. Am.
Chem. Soc., 1989, 111, 8016; (c) J. F. Allan, K. W. Henderson and
Notes and references
A.
R.
Kennedy,
Chem.
Commun.,
1999,
1325;
(d) M. Westerhausen, Inorg. Chem., 1991, 30, 96; (e) W. Clegg,
F. J. Craig, K. W. Henderson, A. R. Kennedy, R. E. Mulvey,
P. A. O’Neil and D. Reed, Inorg. Chem., 1997, 36, 6238;
(f) K. W. Henderson and W. J. Kerr, Chem.–Eur. J., 2001, 7,
3430; (g) B. Conway, E. Hevia, A. R. Kennedy, R. E. Mulvey and
S. Weatherstone, Dalton Trans., 2005, 1532.
z The corresponding Li complex (lithium (R,R)-bis-(1-phenylethyl)-
amide) is reported to achieve an e.r. of 85 : 15 (S : R) at ꢀ78 1C.15 For
comparison, we also evaluated this Li complex under conditions as
established by Simpkins et al.,13 using both internal quench (IQ) and
external quench with LiCl additive16 (EQ) techniques, at ꢀ20 1C and
0 1C, with the following results (selectivity values given as (S : R)):
ꢀ20 1C: 77 : 23 (IQ), 79 : 21 (EQ); 0 1C: 76 : 24 (IQ), 74 : 26 (EQ).
1 Green chemistry guidelines include the consideration of the
energetic cost of chemical processes, see: P. T. Anastas and
J. C. Warner, Green Chemistry: Theory and Practice, Oxford
University Press, New York, 2000.
2 For the energetic consideration of selected chemical reactions, see:
M. J. Gronnow, R. J. White, J. H. Clark and D. J. Macquarrie,
Org. Process Res. Dev., 2005, 9, 516.
3 D. Hayes, Synthetic Chemistry, Pre-Clinical Development,
Chemical Development, GlaxoSmithKline, personal communication.
4 For examples, see: (a) P. Knochel, W. Dohle, N. Gommermann,
F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis and V. A. Vu,
Angew. Chem., Int. Ed., 2003, 42, 4302; (b) H. Ila, O. Baron,
A. J. Wagner and P. Knochel, Chem. Commun., 2006, 583;
12 For a review on the structure of Li amides, see: (a) R. E. Mulvey,
Chem. Soc. Rev., 1991, 20, 167. For the impact of Li amide
oligomers on the selectivity of asymmetric deprotonation pro-
cesses, see: (b) D. Sato, H. Kawasaki, I. Shimada, Y. Arata,
K. Okamura, T. Date and K. Koga, J. Am. Chem. Soc., 1992,
114, 761; (c) K. Aoki, K. Tomioka, H. Noguchi and K. Koga,
Tetrahedron, 1997, 53, 13641.
13 The highest level of enantioselectivity recorded for the corresponding
Li base with LiCl at ꢀ78 1C is 91.5: 8.5 (S:R). See: B. J. Bunn,
N. S. Simpkins, Z. Spavold and M. J. Crimmin, J. Chem. Soc., Perkin
Trans. 1, 1993, 3113 and ref. 8d.
14 A. Alexakis, S. Gille, F. Prian, S. Rosset and K. Ditrich, Tetra-
hedron Lett., 2004, 45, 1449.
15 N. S. Simpkins, J. Chem. Soc., Chem. Commun., 1986, 88.
16 The use of an LiCl additive is known to enable the highest levels of
selectivity in externally quenched reactions.6,13
(c) T. D. Blumke, F. M. Piller and P. Knochel, Chem. Commun.,
¨
2010, 46, 4082; (d) S. H. Wunderlich, C. J. Rohbogner, A. Unsinn
and P. Knochel, Org. Process Res. Dev., 2010, 14, 339.
5 For selected examples, see: (a) M. R. Netherton, C. Dai,
17 For the use of only one equivalent of Me3LiCl as an internal
quench within deprotonation processes, see: (a) W. J. Kerr, A. J.
B. Watson and D. Hayes, Chem. Commun., 2007, 5049;
(b) W. J. Kerr, A. J. B. Watson and D. Hayes, Org. Biomol. Chem.,
2008, 6, 1238; (c) W. J. Kerr, A. J. B. Watson and D. Hayes,
Synlett, 2008, 1386.
18 Such internal quench protocols usually require an excess of
electrophile, see: E. J. Corey and A. W. Gross, Tetrahedron Lett.,
1984, 25, 495.
K. Neuschutz and G. C. Fu, J. Am. Chem. Soc., 2001, 123,
¨
10099; (b) A. Leitner, S. Shekhar, M. J. Pouy and J. F. Hartwig,
J. Am. Chem. Soc., 2005, 127, 15506; (c) T. Hama, D. A. Culkin
and J. F. Hartwig, J. Am. Chem. Soc., 2006, 128, 4976;
(d) O. Navarro, N. Marion, J. Mei and S. P. Nolan, Chem.–Eur. J.,
2006, 12, 5142; (e) L. Melzig, A. Metzger and P. Knochel,
c
2266 Chem. Commun., 2011, 47, 2264–2266
This journal is The Royal Society of Chemistry 2011