Reaction of Ag Hyponitrite with P Halides
J. Phys. Chem. A, Vol. 109, No. 7, 2005 1429
(24) Arulsamy, N.; Bohle, D. S.; Imonigie, J. A.; Sagan, E. S. Inorg.
Chem. 1999, 38, 2716.
(25) Brauer, G. Handbook of PreparatiVe Inorganic Chemistry; Aca-
demic Press: New York, 1963; Vol. 1, p 494.
(26) Parshall, G. W. Inorganic Synthesis; McGraw-Hill: New York,
1974; Vol. 15, p 186.
(27) Parry, R. W. Inorganic Synthesis; McGraw-Hill: New York, 1970;
Vol. 12, p 287.
(28) Reinhardt, H.; Bianchi, D.; Mo¨lle, D. Chem. Ber. 1957, 90, 1656.
(29) Cavell, R, G. Can. J. Chem. 1967, 45, 1309.
(30) Magnelli, D. D.; Tesi, G.; Lowe, J. U., Jr.; McQuisition, W. E.
Inorg. Chem. 1966, 5, 457.
(31) Ha¨gele, G.; Kuchen, W.; Steinberger, H. Z. Naturforsch. 1974, 29B,
349.
(32) Crutchfield, M. M.; Dungan, C. H.; Lechter, J. H.; Mark, V.; Van
Wazer, J. R. In Topics in Phosphorus Chemistry; Grayson, M., Griffith, E.
J., Eds.; Wiley: New York, 1967; Vol. 5, p 281.
THF were used to simulate the experimental environment of
neat F2PBr or F2P(O)Br. Two dissociation pathways, N2-
producing and N2O-producing, were considered. For F2P(O)-
ONdNOPF2, the N2O-producing pathway was lower in free
energy, while the two pathways were of similar free energy in
F2PONdNOPF2. For F2P(O)ONdNOP(O)F2, the N2-producing
pathway was 10.5 kcal/mol lower in free energy, which is in
conflict with experiment (only N2O is produced). The disagree-
ment is removed when the catalytic effect of Ag+ (present from
the silver hyponitrite reactant) is considered. The Ag+ is
predicted to lower the free energy barrier of the N2O-producing
pathway much more than the N2-producing pathway.
Acknowledgment. Computer time was made available on
the Auburn COSAM PRISM cluster.
(33) Robinson, S. A. Can. J. Chem. 1962, 40, 1725.
(34) Rudolph, R. W.; Taylor, R. C.; Parry, R. W. J. Am. Chem. Soc.
1966, 88, 3729.
Supporting Information Available: Spin-squared values
at the B3LYP/SBS level, zero-point energies (kcal/mol), heat
capacity corrections to 298 K (kcal/mol), entropies (cal/mol‚
K), free energies of solvation in THF (kcal/mol), and total
energies (hartrees) are tabulated in Table S1 (1 pages). Cartesian
coordinates of all optimized structures in Tables 1-3 and 5 at
the B3LYP/6-31+G(d) level are given in Table S2 (11 pages).
This material is available free of charge via the Internet at http://
pubs.acs.org.
(35) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.
N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
revision B.04; Gaussian, Inc.: Pittsburgh, PA, 2003.
(36) Koch, W.; Holthausen, M. C. A Chemist’s Guide to Density
Functional Theory; Wiley: New York, 2001.
(37) (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270. (b) Wadt,
W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284. (c) Hay, P. J.; Wadt, W.
R. J. Chem. Phys. 1985, 82, 299.
(38) Schaftenaar, G.; Noordik, J. H. MOLDEN. J. Comput.-Aided Mol.
Des. 2000, 14, 123.
(39) Dolg, M.; Stoll, H.; Preuss, H.; Pitzer, R. M. J. Phys. Chem. 1993,
97, 5852.
(40) Reed, A.; Curtiss, L. A.; Weinhold, F. Chem. ReV. 1988, 88, 899.
(41) (a) Barone V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995. (b)
Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24,
669.
References and Notes
(1) Hughes, M. N. Q. ReV. Chem. Soc. 1968, 22, 1.
(2) Kiefer, H.; Traylor, T. G. Tetrahedron Lett. 1966, 7, 6163.
(3) Arulsamy, N.; Bhole, D. S.; Imonigie, J. A.; Sagan, E. S. J. Am.
Chem. Soc. 2000, 122, 5539.
(4) Kuhn, L.; Lippincott, E. R. J. Am. Chem. Soc. 1956, 78, 1820.
(5) Rauch, J. E.; Decius, J. C. Spectrochim. Acta 1966, 22, 1963.
(6) Hughes, M. N. J. Inorg. Nucl. Chem. 1967, 29, 1376.
(7) McGraw, G. E.; Bernitt, D. L.; Hisatsune, I. C. Spectrochim. Acta
1967, 23A, 25.
(8) Hughes, M. N.; Stedman, G. J. Chem. Soc. 1963, 2824.
(9) Fraser, R. T. M.; Lee, R. N.; Hyden, K. J. Chem. Soc. A 1967,
741.
(10) Neuman, R. C., Jr.; Bussey, R. J. J. Am. Chem. Soc. 1970, 92,
2440.
(11) Addison, C. C.; Gamlen, G. A. Thompson, R. J. Chem. Soc. 1952,
338.
(12) Quinga, E. M. Y.; Mendenhall, G. D. J. Org. Chem. 1985, 50, 2836.
(13) Beck, W.; Engelmann, H.; Smedal, H. S. Z. Anorg. Allg. Chem.
1968, 357, 134.
(14) Wiberg, V. N.; Bayer, H.; Zeigleder, G. Z. Anorg. Allg. Chem. 1979,
459, 208.
(15) Brown, R. E.; Mendenhall, G. D.; Bartlett, R. J. Int. J. Quantum
Chem. Symp. 1987, 21, 603.
(42) The dielectric constant for THF is 7.5. The dielectric constant for
liquid OdPCl3 is 14.0. See http://www.asiinstr.com/dc1.html.
(43) Loechler, E. L.; Schneider, A. M.; Schwartz, D. B.; Hollocher, T.
C. J. Am. Chem. Soc. 1987, 109, 3076.
(44) Hussain, M. A.; Stedman, G.; Hughes, M. N. J. Chem. Soc. B 1968,
597.
(45) Holland, P. M.; Castleman, A. W., Jr. J. Chem. Phys. 1982, 76,
4195.
(46) (a) Ma, N. L. Chem. Phys. Lett. 1998, 297, 230. (b) El Aribi, H.;
Shoeib, T.; Ling, Y.; Rodriquez, C. F.; Hopkinson, A. C.; Siu, K. W. M. J.
Phys. Chem. A 2002, 106, 2908.
(16) Quinga, E. M. Y.; Bieker, T.; Dziobak, M. P.; Mendenhall, G. D.
J. Org. Chem. 1989, 54, 2769.
(17) Abata, J. D.; Dziobak, M. P.; Nachbor, M.; Mendenhall, G. D. J.
Phys. Chem. 1989, 93, 3368.
(18) Prinetto, F.; Ghiotti, G.; Nova, I.; Lietti, L.; Tronconi, E.; Forzatti,
P. J. Phys. Chem. B 2001, 105, 12732.
(47) (a) Howe, J. D.; Ashfold, M. N. R.; Hudgens, J. W.; Johnson, R.
D., III J. Chem. Phys. 1994, 101, 3549. (b) Burdet, J. K.; Hodges, L.;
Dunning, V.; Current, J. H. J. Phys. Chem. 1970, 74, 4053. (c) Nelson,
W.; Jackel, G.; Gordy, W. J. Chem. Phys. 1970, 52, 4572. (d) Wei, M. S.;
Current, J. H.; Gendell, J. J. Chem. Phys. 1970, 52, 1592. (e) Hinchliffe,
A.; Bounds, D. G. J. Mol. Struct. 1979, 54, 231.
(48) Eisenberg, M.; Desmarteau, D. D. Inorg. Chem. 1972, 11, 1901.
(49) Chen, H.-T. E.; Mendenhall, G. D. J. Am. Chem. Soc. 1984, 106,
6375.
(19) Westerberg B.; Fridell, E. J. Mol. Catal. A: Chem. 2001, 165, 249.
(20) Al-Ajlouni, A. M.; Gould, E. S J. Chem. Soc., Dalton Trans. 2000,
1239.
(21) Feldmann, C.; Jansen, M. Angew. Chem., Int. Ed. Engl. 1996, 35,
1728.
(22) Arulsamy, N.; Bohle, D. S.; Imonigie, J. A.; Levine, S. Angew.
Chem., Int. Ed. 2002, 41, 2371.
(23) Poskrebyshev, G. A.; Shafirovich, V.; Lymar, S. V. J. Am. Chem.
Soc. 2004, 126, 891.