pubs.acs.org/joc
coupling.6 These methods suffer from several drawbacks
Mild Transition-Metal-Free Amination of
Fluoroarenes Catalyzed by Fluoride Ions
including harsh reaction conditions such as high tempera-
tures, the need for strong bases (K2CO3, K3PO4 ,or NaH), or
the stoichiometric use of copper. During the last two decades,
transition-metal-catalyzed N-arylation has received wide inter-
est. Buchwald7 and Hartwig8 developed broadly applicable
palladium-catalyzed aminations of haloarenes. Following this
breakthrough, numerous publications on the palladium-
catalyzed cross-coupling of aryl halides with amines have
been reported. However, the use of stoichiometric amounts of a
base is still mandatory, and elevated reaction temperatures
are often required.9 Using bidentate ligands, Buchwald10
and Taillefer11 accomplished the copper-catalyzed N-aryla-
tion of heterocycles with bromo- and iodoarenes. Since then,
the Ullmann reaction has seen a resurgence due to the eco-
nomic attractiveness of copper.12 Instead of aryl halides, sev-
eral other types of cross-coupling partners have also been
employed, among them arylboronic acids,13 potassium aryltri-
fluoroborates,14 arylsiloxanes,15 arylstannanes,16 aryllead
triacetates,17 and arylbismuth reagents.18 Quite mild conditions
have been achieved with these substrates; however, these
Daniel Dehe, Isabel Munstein, Andreas Reis, and Werner
R. Thiel*
€
Technische Universitat Kaiserslautern, Fachbereich Chemie,
Erwin-Schrodinger-Strasse, Geb. 54, 67663 Kaiserslautern,
€
Germany
Received October 18, 2010
(7) (a) Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 7901–
7902. (b) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem. Soc. 1996,
118, 7215–7216. (c) Wolfe, J. P.; Wagaw, S.; Marcoux, J.; Buchwald, S. L.
Acc. Chem. Res. 1998, 31, 805–818. (d) Yang, B. H.; Buchwald, S. L. J.
Organomet. Chem. 1999, 576, 125–146. (e) Muci, A. R.; Buchwald, S. L. Top.
Curr. Chem. 2002, 219, 131–209. (f) Anderson, K. W.; Tundel, R. E.; Ikawa,
T.; Altman, R. A.; Buchwald, S. L. Angew. Chem., Int. Ed. 2006, 45, 6523–
6527.
(8) (a) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046–2067. (b)
Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852–860. (c) Hartwig, J. F. Pure
Appl. Chem. 1999, 71, 1417–1424. (d) Hartwig, J. F. Synlett 1997, 1997, 329–
340. (e) Baranano, D.; Mann, G.; Hartwig, J. F. Curr. Org. Chem. 1997, 1,
287–305.
Trimethylsilyl-protected heterocycles undergo N-C bond
formation with a variety of electron-deficient fluoroarenes
catalyzed by fluoride ions. This reaction avoids stoichio-
metric amounts of base and thus makes N-arylhetero-
cycles accessible in a very mild and transition-metal-free
way.
(9) (a) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176–
4211. (b) Surry, D.; Buchwald, S. Angew. Chem., Int. Ed. 2008, 47, 6338–
6361. (c) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534–1544.
(10) (a) Kiyomori, A.; Marcoux, J.; Buchwald, S. L. Tetrahedron Lett.
1999, 40, 2657–2660. (b) Klapars, A.; Antilla, J. C.; Huang, X.; Buchwald,
S. L. J. Am. Chem. Soc. 2001, 123, 7727–7729. (c) Antilla, J. C.; Klapars, A.;
Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684–11688. (d) Antilla, J. C.;
Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69, 5578–
5587.
N-Arylheterocycles are ubiquitous motifs in pharmaceu-
ticals,1 natural products,2 N-heterocyclic carbenes,3 and
compounds of interest in material science.4 Traditional
methods for their preparation are the aromatic nucleophilic
substitution (SNAr) reaction5 and the classical Ullmann
(1) (a) Kundu, N. G.; Mahanty, J. S.; Chowdhury, C.; Dasgupta, S. K.;
Das, B.; Spears, C. P.; Balzarini, J.; De Clercq, E. Eur. J. Med. Chem. 1999,
34, 389–398. (b) Campeau, L.; Fagnou, K. Chem. Soc. Rev. 2007, 36, 1058–
1068. (c) Wiglenda, T.; Ott, I.; Kircher, B.; Schumacher, P.; Schuster, D.;
Langer, T.; Gust, R. J. Med. Chem. 2005, 48, 6516–6521. (d) Cozzi, P.;
Carganico, G.; Fusar, D.; Grossoni, M.; Menichincheri, M.; Pinciroli, V.;
Tonani, R.; Vaghi, F.; Salvati, P. J. Med. Chem. 1993, 36, 2964–2972.
(2) (a) De Luca, L. Curr. Med. Chem 2006, 13, 1–23. (b) Jin, Z. Nat. Prod.
Rep. 2005, 22, 196–229.
(3) (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290–1309. (b)
Nair, V.; Bindu, S.; Sreekumar, V. Angew. Chem., Int. Ed. 2004, 43, 5130–
5135. (c) Vargas, V. C.; Rubio, R. J.; Hollis, T. K.; Salcido, M. E. Org. Lett.
2003, 5, 4847–4849.
(4) (a) McClenaghan, N. D.; Passalacqua, R.; Loiseau, F.; Campagna, S.;
Verheyde, B.; Hameurlaine, A.; Dehaen, W. J. Am. Chem. Soc. 2003, 125,
5356–5365. (b) Goodson, F. E.; Hartwig, J. F. Macromolecules 1998, 31,
1700–1703. (c) Singer, R. A.; Sadighi, J. P.; Buchwald, S. L. J. Am. Chem.
Soc. 1998, 120, 213–214.
(5) (a) Burnett, J. F.; Zahler, R. E. Chem. Rev. 1951, 49, 273–412. (b)
Zoltewicz, J. A. Top. Curr. Chem. 1975, 59, 33–64. (c) Smith, M. B.; March, J.
March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Struc-
ture, 6th ed.; Wiley: New York, 2007. (d) Carey, F. A.; Sundberg, R. J.
Advanced Organic Chemistry, Part A: Structure and Mechanisms, 5th ed.;
Springer: New York, 2007.
(11) (a) Cristau, H.; Cellier, P. P.; Spindler, J.; Taillefer, M. Chem.;Eur.
J. 2004, 10, 5607–5622. (b) Cristau, H.; Cellier, P.; Spindler, J.; Taillefer, M.
Eur. J. Org. Chem. 2004, 2004, 695–709.
ꢀ
(12) (a) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M.
Chem. Rev. 2002, 102, 1359–1470. (b) Kunz, K.; Scholz, U.; Ganzer, D.
Synlett 2003, 2003, 2428–2439. (c) Ley, S. V.; Thomas, A. W. Angew. Chem.,
Int. Ed. 2003, 42, 5400–5449. (d) Beletskaya, I. P.; Cheprakov, A. V. Coord.
Chem. Rev. 2004, 248, 2337–2364. (e) Evano, G.; Blanchard, N.; Toumi, M.
Chem. Rev. 2008, 108, 3054–3131. (f) Monnier, F.; Taillefer, M. Angew.
Chem., Int. Ed. 2008, 47, 3096–3099. (g) Ma, D.; Cai, Q. Acc. Chem. Res.
2008, 41, 1450–1460. (h) Monnier, F.; Taillefer, M. Angew. Chem., Int. Ed.
2009, 48, 6954–6971.
(13) (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.; Winters, M. P.
Tetrahedron Lett. 1998, 39, 2933–2936. (b) Evans, D. A.; Katz, J. L.; West,
T. R. Tetrahedron Lett. 1998, 39, 2937–2940. (c) Lam, P. Y. S.; Clark, C. G.;
Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A.
Tetrahedron Lett. 1998, 39, 2941–2944.
(14) Quach, T. D.; Batey, R. A. Org. Lett. 2003, 5, 1381–1384.
(15) Lam, P. Y. S.; Deudon, S.; Averill, K. M.; Li, R.; He, M. Y.;
DeShong, P.; Clark, C. G. J. Am. Chem. Soc. 2000, 122, 7600–7601.
(16) Lam, P. Y.; Vincent, G.; Bonne, D.; Clark, C. G. Tetrahedron Lett.
2002, 43, 3091–3094.
ꢀ
~
(17) Lopez-Alvarado, P.; Avendano, C.; Menendez, J. C. Tetrahedron
ꢀ
Lett. 1992, 33, 659–662.
(18) Finet, J.-P.; Fedorov, A.Yu.; Combes, S.; Boyer, G. Curr. Org.
Chem. 2002, 6, 597–626.
(6) (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382–2384. (b)
Ullmann, F.; Illgen, E. Ber. Dtsch. Chem. Ges. 1914, 47, 380–383.
DOI: 10.1021/jo102063s
r
Published on Web 01/18/2011
J. Org. Chem. 2011, 76, 1151–1154 1151
2011 American Chemical Society