10.1002/cctc.201601027
ChemCatChem
11C labeled drug molecules we formylated cinacalcet (2t),
setraline (2u) and nortriptyline (2v) as well as the amino acid
ethyl formyl-L-tryptophanate (2s). The N-formylated products
were isolated in good yields (66-84%).
A. Canonica, A. Baiker, Appl. Catal., A 2003, 255, 23–33. e) P.
Munshi, D. J. Heldebrant, E. P. McKoon, P. A. Kelly, C.-C. Tai, P. G.
Jessop, Tetrahedron Lett. 2003, 44, 2725–2727. f) P. G. Jessop, Y.
Hsiao, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1996, 118, 344–355.
K. Motokura, N. Takahashi, D. Kashiwame, S. Yamaguchi, A. Miyaji,
T. Baba, Catal. Sci. Technol. 2013, 3, 2392–2396.
[8]
[9]
S. Zhang, Q. Mei, H. Liu, H. Liu, Z. Zhang, B. Han, RSC Adv. 2016, 6,
32370–32373.
[10] X. Frogneux, O. Jacquet, T. Cantat, Catal. Sci. Technol. 2014, 4,
1529–1533.
[11] a) C. Das Neves Gomes, O. Jacquet, C. Villiers, P. Thuéry, M.
Ephritikhine, T. Cantat, Angew. Chem. Int. Ed. Engl. 2012, 51, 187–90
b) C. Das Neves Gomes, O. Jacquet, C. Villiers, P. Thuéry, M.
Ephritikhine, T. Cantat, Angew. Chem. 2012, 124, 191–194
[12] a) O. Jacquet, C. Das Neves Gomes, M. Ephritikhine, T. Cantat, J.
Am. Chem. Soc. 2012, 134, 2934–7. b) E. Blondiaux, J. Pouessel, T.
Cantat, Angew. Chem. Int. Ed. Engl. 2014, 53, 12186–90 c) E.
Blondiaux, J. Pouessel, T. Cantat, Angew. Chem. 2014, 126, 12382–
12386. d) S. Das, F. D. Bobbink, G. Laurenczy, P. J. Dyson, Angew.
Chem. Int. Ed. Engl. 2014, 53, 12876–9. e) S. Das, F. D. Bobbink, G.
Laurenczy, P. J. Dyson, Angew. Chem. 2014, 126, 13090–13093. f) S.
N. Riduan, J. Y. Ying, Y. Zhang, J. Catal. 2015, DOI
10.1016/j.jcat.2015.09.009. f) S. Das, F. D. Bobbink, S. Bulut, M.
Scheme 4. Reduction of 4-acetyl-N-methylaniline with PhSiH3 under CO2 or
N2.
In conclusion, we have demonstrated that simple
nucleophilic anions with a high affinity for silicon act as
hydrosilylation catalysts for the reduction of CO2 and the
subsequent N-formylation of amines under ambient conditions.
A mechanism for the catalysts is described based on the
activation of the silane reducing agent followed by the direct
reduction of CO2 with silicon hydride. The system has an
unprecedented selectivity for the reduction of CO2 over the
otherwise more reactive carbonyls, imines and hydrazones.
The novel approach described here should lead to the
development of more active catalysts for the reductive
functionalization of CO2 in the future.
Soudani, P. J. Dyson, Chem. Commun.
2016, DOI
10.1039/c5cc08741d.
[13] a) C. C. Chong, R. Kinjo, Angew. Chem. Int. Ed. 2015, 54, 12116–
12120. b) C. C. Chong, R. Kinjo, Angew. Chem. 2015, 127, 12284–
12288.
[14] L. Hao, Y. Zhao, B. Yu, Z. Yang, H. Zhang, B. Han, X. Gao, Z. Liu,
ACS Catal. 2015, 5, 4989–4993.
[15] a) G. Gurau, H. Rodríguez, S. P. Kelley, P. Janiczek, R. S. Kalb, R. D.
Rogers, Angew. Chem. Int. Ed. Engl. 2011, 50, 12024–6. b) G. Gurau,
H. Rodríguez, S. P. Kelley, P. Janiczek, R. S. Kalb, R. D. Rogers,
Angew. Chem. 2011, 123, 12230–12232. c) A. K. L. Yuen, A. F.
Masters, T. Maschmeyer, Catal. Today 2013, 200, 9–16.
[16] K. Motokura, M. Naijo, S. Yamaguchi, A. Miyaji, T. Baba, Chem. Lett.
2015, 44, 1217–1219.
ACKNOWLEDGMENT
We thank Bastien L. Roulier for his technical assistance and
the Fondation Claude et Juliana (M.H.) and the Swiss
Competence Centre for Energy Research (F.D.B.) for financial
support.
[17] a) M. Fujita, T. Hiyama, J. Org. Chem. 1988, 53, 5405–5415. b) M. D.
Drew, N. J. Lawrence, W. Watson, S. A. Bowles, Tetrahedron Lett.
1997, 38, 5857–5860. c) Y. Kobayashi, E. Takahisa, M. Nakano, K.
Watatani, Tetrahedron 1997, 53, 1627–1634. d) M. Drew, N.
Lawrence, D. Fontaine, L. Sehkri, S. Bowles, W. Watson, Synlett
1997, 1997, 989–991. e) K. Revunova, G. I. Nikonov, Dalton Trans.
2015, 44, 840–66. f) K. Revunova, G. I. Nikonov, Chem. - Eur. J.
2014, 20, 839–45.
[1]
[2]
Aresta, M. Carbon Dioxide as Chemical Feedstock; Wiley-VCH Verlag
GmBh, Weinheim; 2010.
a) R. F. Nystrom, W. H. Yanko, W. Brown, J. Am. Chem. Soc. 1948,
70, 441–441. b) T. Wartik, R. K. Pearson, J. Am. Chem. Soc. 1955,
77, 1075–1075. c) I. Knopf, C. C. Cummins, Organometallics 2015,
34, 1601–1603.
[18] a) K. Fujiwara, S. Yasuda, T. Mizuta, Organometallics 2014, 33,
6692–6695. b) A. Berkefeld, W. E. Piers, M. Parvez, J. Am. Chem.
Soc. 2010, 132, 10660–1.
[19] a) G. Ménard, D. W. Stephan, Dalton Trans. 2013, 42, 5447–53. b) P.-
C. Kuo, I.-C. Chen, J.-C. Chang, M.-T. Lee, C.-H. Hu, C.-H. Hung, H.
Lee, J.-H. Huang, Eur. J. Inorg. Chem. 2004, 2004, 4898–4906.
[20] a) J. A. B. Abdalla, I. M. Riddlestone, R. Tirfoin, S. Aldridge, Angew.
Chem. Int. Ed. Engl. 2015, 54, 5098–102. b) J. A. B. Abdalla, I. M.
Riddlestone, R. Tirfoin, S. Aldridge, Angew. Chem. 2015, 127, 5187–
5191.
[3]
a) J. Klankermayer, S. Wesselbaum, K. Beydoun, W. Leitner, Angew.
Chem. 2016, 128, 7416–7467. b) J. Klankermayer, S. Wesselbaum,
K. Beydoun, W. Leitner, Angew. Chem. Int. Ed. 2016, DOI
10.1002/anie.201507458. c) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat.
Commun. 2015, 6, 5933. d) C. Maeda, Y. Miyazaki, T. Ema, Catal.
Sci. Technol. 2014, 4, 1482. e) F. J. Fernández-Alvarez, A. M. Aitani,
L. A. Oro, Catal. Sci. Technol. 2014, 4, 611–624. f) K. Huang, C.-L.
Sun, Z.-J. Shi, Chem. Soc. Rev. 2011, 40, 2435–52. g) M. Liu, T. Qin,
Q. Zhang, C. Fang, Y. Fu, B.-L. Lin, Sci. China: Chem. 2015, 58,
1524–1531.
[21] A. Jana, D. Ghoshal, H. W. Roesky, I. Objartel, G. Schwab, D. Stalke,
J. Am. Chem. Soc. 2009, 131, 1288–93.
[22] a) A. Jana, H. W. Roesky, C. Schulzke, A. Döring, Angew. Chem. Int.
Ed. Engl. 2009, 48, 1106–9. b) A. Jana, H. W. Roesky, C. Schulzke,
A. Döring, Angew. Chem. 2009, 121, 1126–1129. c) G. Albertin, S.
Antoniutti, J. Castro, S. García-Fontán, G. Zanardo, Organometallics
2007, 26, 2918–2930.
[4]
[5]
A. Tlili, E. Blondiaux, X. Frogneux, T. Cantat, Green Chem. 2015, 17,
157–168.
H. Bipp, Hansjörg; Kieczka, Ullmann’s Encyclopedia of Industrial
Chemistry, Wiley-VCH Verlag GmbH
Germany, 2000.
& Co. KGaA, Weinheim,
[23] P. Arya, J. Boyer, R. J. P. Corriu, G. F. Lanneau, M. Perrot, J.
Organomet. Chem. 1988, 346, C11–C14.
[6]
[7]
F. Liger, T. Eijsbouts, F. Cadarossanesaib, C. Tourvieille, D. Le Bars,
T. Billard, Eur. J. Org. Chem. 2015, 2015, 6434–6438.
[24] Q. Zhou, Y. Li, J. Am. Chem. Soc. 2015, 137, 10182–9.
[25] a) L. Kaplan, K. E. Wilzbach, J. Am. Chem. Soc. 1955, 77, 1297–
1302. b) L. H. Sommer, O. F. Bennett, P. G. Campbell, D. R.
Weyenberg, J. Am. Chem. Soc. 1957, 79, 3295–3296. c) J. E. Baines,
C. Eaborn, J. Chem. Soc. 1955, 4023.
a) L. Zhang, Z. Han, X. Zhao, Z. Wang, K. Ding, Angew. Chem. Int.
Ed. 2015, 54, 6186–6189. b) L. Zhang, Z. Han, X. Zhao, Z. Wang, K.
Ding, Angew. Chem. 2015, 127, 6284–6287. c) C. Ziebart, C.
Federsel, P. Anbarasan, R. Jackstell, W. Baumann, A. Spannenberg,
M. Beller, J. Am. Chem. Soc. 2012, 134, 20701–20704. d) L. Schmid,
[26] S. Kobayashi, M. Yasuda, I. Hachiya, Chem. Lett. 1996, 407–408.
This article is protected by copyright. All rights reserved.