Angewandte
Chemie
[15] For dihydroxylation with H2O2 in the presence of
Keywords: alkenes · dihydroxylation · green chemistry ·
hydrogen peroxide · oxidation
.
(NH4)10W12O41/hydrotalcite catalyst, see: a) T. Tatsumi, K.
Yamamoto, H. Tajima, H. Tominaga, Chem. Lett. 1992, 815 –
818; For the use of Ti-beta zeolites as catalyst, see: b) A. Corma,
M. A. Camblor, P. Esteve, A. Martꢀnez, J. Pꢁrez-Pariente, J.
Catal. 1994, 145, 151 – 158; for the use of Ti-MCM zeolites as
catalysts, see: c) A. Corma, M. T. Navarro, J. Pꢁrez-Pariente, J.
Chem. Soc. Chem. Commun. 1994, 147 – 148; d) T. Tatsumi,
K. A. Koyano, N. Igarashi, Chem. Commun. 1998, 325 – 326; for
the use of Nb-MCM-41 zeolites as catalyst, see: e) J. Xin, J. Suo,
X. Zhang, Z. Zhang, New J. Chem. 2000, 24, 569 – 570.
[16] Nafion resins were first synthesized at DuPont; see: a) D. C.
England, US Patent, 2852554, 1958 [Chem. Abstr. 1959, 53,
2253]; b) D. J. Conolly, W. F. Gresham, US Patent 3282875,
1966; for a review on the use of nafion for organic syntheses, see:
c) G. A. Olah, P. S. Iyer, G. K. Surya Prakash, Synthesis 1986,
513 – 531.
[1] a) Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 12,
4th ed. (Eds.: J. I. Kroscwitz, M. Howe-Grant), Wiley, New York,
1991; b) K. Kulkaand, J. W. Dittrick, Cosmet. Perfum. 1975, 90,
90 – 95.
[2] a) M. Hudlicky, Oxidations in Organic Chemistry, American
Chemical Society, Washington, DC, 1990, pp. 174 – 184 (ACS
Monograph Ser. 186); b) A. H. Haines in Comprehensive
Organic Synthesis, Vol. 7., 1st ed. (Eds.: B. M. Trost, I. Fleming),
Pergamon, Oxford, 1991, pp. 437 – 438; c) J. March, Advanced
Organic Chemistry, 4th ed., Wiley, New York, 1992, pp. 822 –
825.
[3] a) G. Wagner, Ber. Dtsch. Chem. Ges. 1888, 21, 1230 – 1240;
b) G. Wagner, Ber. Dtsch. Chem. Ges. 1888, 21, 3347 – 3355; c) G.
Wagner, Ber. Dtsch. Chem. Ges. 1890, 23, 2307 – 2319; d) A. J.
Fatiadi, Synthesis 1989, 85 – 127.
[4] a) R. Criegee, Justus Liebigs Ann. Chem. 1936, 522, 75 – 97; b) R.
Criegee, B. Marchand, H. Wannowius, Justus Liebigs Ann.
Chem. 1942, 550, 99 – 133; c) M. Schröder, Chem. Rev. 1980, 80,
187 – 213.
[5] K. Akashi, R. E. Palermo, K. B. Sharpless, J. Org. Chem. 1978,
43, 2063 – 2066.
[6] D. Swern, Chem. Rev. 1949, 49, 1 – 68.
[7] F. Fringuelli, R. Germani, F. Pizzo, G. Savelli, Synth. Commun.
1989, 19, 1939 – 1943.
[8] B. M. Trost, Angew. Chem. 1995, 107, 285 – 307; Angew. Chem.
Int. Ed. Engl. 1995, 34, 259 – 281.
[17] Amberlyst and amberlite products are ion-exchange resins
produced by the ORGANO Corporation.
[18] S. Vayssiꢁ, H. Elias, Liebigs Ann. 1997, 2567 – 2572.
[19] One of the referees for this Communication suggested the
possibility that H2O2 is activated by the resin-supported sulfonic
acid through hydrogen-bond formation; for example, see:
a) M. C. A. van Vliet, I. W. C. E. Arends, R. A. Sheldon, Synlett
2001, 248 – 250; b) J. Wahlen, D. E. De Vos, P. A. Jacobs, Org.
Lett. 2003, 5, 1777 – 1780.
[20] a) D. Swern, Org. React. 1953, 7, 378 – 433; b) J. Rebek, Jr., L.
Marshall, R. Wolak, J. Org. Chem. 1986, 51, 1649 – 1653.
[21] W. D. Emmons, A. S. Pagano, J. P. Freeman, J. Am. Chem. Soc.
1954, 76, 3472 – 3474.
[9] R. A. Sheldon, Chem. Ind. 1997, 12 – 15.
[10] a) J. O. Metzger, Angew. Chem. 1998, 110, 3145 – 3148; Angew.
Chem. Int. Ed. 1998, 37, 2975 – 2978; b) P. T. Anastas, J. C.
Warner, Green Chemistry, Theory and Practice, Oxford Univer-
sity Press, New York, 1998.
[11] a) K. Sato, M. Aoki, M. Ogawa, T. Hashimoto, R. Noyori, J. Org.
Chem. 1996, 61, 8310 – 8311; b) K. Sato, M. Aoki, J. Takagi, R.
Noyori, J. Am. Chem. Soc. 1997, 119, 12386 – 12387; c) K. Sato,
M. Aoki, M. Ogawa, T. Hashimoto, D. Penyella, R. Noyori, Bull.
Chem. Soc. Jpn. 1997, 70, 905 – 915; d) K. Sato, M. Aoki, R.
Noyori, Science 1998, 281, 1646 – 1647; e) K. Sato, J. Takagi, M.
Aoki, R. Noyori, Tetrahedron Lett. 1998, 39, 7549 – 7552; f) K.
Sato, M. Aoki, J. Takagi, K. Zimmermann, R. Noyori, Bull.
Chem. Soc. Jpn. 1999, 72, 2287 – 2306; g) K. Sato, M. Hyodo, J.
Takagi, M. Aoki, R. Noyori, Tetrahedron Lett. 2000, 41, 1439 –
1442; h) K. Sato, M. Hyodo, M. Aoki, X.-Q. Zheng, R. Noyori,
Tetrahedron 2001, 57, 2469 – 2476; i) Y. Usui, K. Sato, Green
Chem. 2003, 5, 373 – 375.
[12] R. Noyori, M. Aoki, K. Sato, Chem. Commun. 2003, 1977 – 1986.
[13] For dihydroxylation with aqueous H2O2 in acetic acid, see:
a) T. P. Hilditch, J. Chem. Soc. 1926, 1828 – 1836; in formic acid,
see: b) D. Swern, G. N. Billen, T. W. Findley, J. T. Scanlan, J. Am.
Chem. Soc. 1945, 67, 1786 – 1789; c) A. Roebuck, H. Adkins in
Org. Synth. Coll. Vol., Vol. 3 (Ed.: E. C. Horning), Wiley, New
York, 1962, pp. 217 – 219.
[14] For H2WO4-catalyzed dihydroxylation with H2O2, see: a) M.
Mugdan, D. P. Young, J. Chem. Soc. 1949, 2988 – 3000; b) G. B.
Payne, C. W. Smith, J. Org. Chem. 1957, 22, 1682 – 1685; c) V.
Singh, P. T. Deota, Synth. Commun. 1988, 18, 617 – 624; d) T.
Oguchi, T. Ura, Y. Ishii, M. Ogawa, Chem. Lett. 1989, 857 – 860;
for the use of a heteropoly acid catalyst, see: e) M. Schwegler, M.
Floor, H. van Bekkum, Tetrahedron Lett. 1988, 29, 823 – 826;
f) C. Venturello, M. Gambaro, Synthesis 1989, 295 – 297; for the
use of CH3ReO3 as catalyst, see: g) W. A. Herrmann, R. W.
Fischer, D. W. Marz, Angew. Chem. 1991, 103, 1706 – 1708;
Angew. Chem. Int. Ed. Engl. 1991, 30, 1638 – 1641.
Angew. Chem. Int. Ed. 2003, 42, 5623 –5625
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5625