10018 J. Agric. Food Chem., Vol. 54, No. 26, 2006
Gotardo et al.
(14) Chan, K. H.; Chu, W. Atrazine removal by catalytic oxidation
processes with or without UV irradiation: Part II: an analysis
of the reaction mechanisms using LC/ESI-tandem mass spec-
trometry. Appl. Catal., B 2005, 58, 165-174.
(15) Sharefkin, J. G.; Saltzman, H. Iodosobenzene. Organic Syntheses;
Wiley & Sons: New York, 1973; Collect. Vol. 5, p 658.
(16) Adler, A. D.; Longo, F. R.; Kampas, F.; Kim, J. On the
preparation of metalloporphyrins. J. Inorg. Nucl. Chem. 1970,
32, 2443-2445.
In conclusion, this work has demonstrated the ability of
metalloporphyrins to mimic the action of P450 in the oxidation
of atrazine, a highly persistent herbicide, as well as their capacity
to mimic the in vivo action of P450, with formation of two of
the metabolites found in plants: DEA and DIA.
Our studies also showed the potential application of these
biomimetic chemical models in studies that pursue the elucida-
tion of the in vivo metabolism of herbicides, thus overcoming
the difficulty in working with enzymes in vitro.
As in the case of studies on drug oxidation, it can be
envisaged that metalloporphyrins will become an important tool
for the understanding of herbicide metabolism, and they will
help elucidate some resistance mechanisms developed by weeds,
thus assisting the development of novel compounds for pest
control in agriculture.
(17) Nash, T. Colorimetric determination of formaldehyde under mild
conditions. Nature 1952, 170, 976.
(18) Karki, S. B.; Dinnocenzo, J. P.; Jones, J. P.; Korzekwa, K. R.
Mechanism of Oxidative Amine Dealkylation of Substituted N,N-
Dimethylanilines by Cytochrome P-450: Application of Isotope
Effect Profiles. J. Am. Chem. Soc. 1995, 117, 3657-3664.
(19) Groves, J. T. High-valent iron in chemical and biological
oxidations J. Inorg. Biochem. 2006, 100, 434-447.
(20) Nam, W.; Han, H. J.; Oh, S. Y.; Lee, Y. J.; Choi, M. H.; Han,
S. Y.; Kim, C.; Woo, S. K.; Shin, W. New Insights into the
Mechanisms of O-O Bond Cleavage of Hydrogen Peroxide and
tert-Alkyl Hydroperoxides by Iron(III) Porphyrin Complexes.
J. Am. Chem. Soc. 2000, 122, 8677-8684.
ACKNOWLEDGMENT
We thank Dr. Akira Ueda, from Syngenta, for kindly supplying
atrazine. We also thank Professor Otaciro R. Nascimento for
the EPR analysis.
(21) Guedes, A. A.; Santos, A. C. M.; Assis, M. D. Some factors
influencing the selectivity of styrene oxidation by active oxygen
donors catalyzed by three generations of ironporphyrins. Kinet.
Catal. 2006, 47, 572-580.
(22) Schiavon, M. A.; Iamamoto, Y.; Nascimento, O. R.; Assis, M.
D. Catalytic activity of nitro- and carboxy-substituted iron
porphyrins in hydrocarbon oxidation: Homogeneous solution and
supported systems. J. Mol. Catal. A: Chem. 2001, 174, 213-
222.
(23) Kawahigashi, H.; Hirose, S.; Ohkawa, H.; Ohkawa, Y. Phytore-
mediation of the herbicides atrazine and metolachlor by trans-
genic rice plants expressing human CYP1A1, CYP2B6, and
CYP2C19. J. Agric. Food Chem. 2006, 54, 2985-2991.
(24) Ross, M. K.; Filipov, N. M. Determination of atrazine and its
metabolites in mouse urine and plasma by LC-MS analysis.
Anal. Biochem. 2006, 351, 161-173.
(25) Gunter, M. J.; Turner, P. The role of the axial ligand in
mesotetraarylmetalloporphyrin models of the P-450 cytochromes.
J. Mol. Catal. 1991, 66, 121-126.
(26) Battioni, P.; Renaud, J. P.; Bartoli, J. F.; Artiles, M. R.; Fort,
M.; Mansuy, D. Monooxygenase-like Oxidation of Hydrocarbons
by Hydrogen Peroxide Catalyzed by Manganese Porphyrins and
Imidazole: Selection of the Best Catalytic System and Nature
of the Active Oxygen Species. J. Am. Chem. Soc. 1988, 110,
8462-8463.
(27) Bell, S. E. J.; Cooke, P. R.; Inchley, P.; Leanord, D. R.; Smith,
J. R. L. Oxoiron(IV) porphyrins derived from charged iron(III)
tetraarylporphyrins and chemical oxidants in aqueous and
methanolic solutions. J. Chem. Soc., Perkin Trans. 1991, 2, 549-
559.
LITERATURE CITED
(1) Reichhart, D. W.; Hehn, A.; Didieriean, L. Cytochrome P450
for engineering herbicide tolerance. Trends Plant Sci. 2000, 5,
116-123.
(2) Coleman, J.; Blake-Kalff, M.; Davies, E. Detoxification of
xenobiotics by plants: chemical modification and vacuolar
compartmentation. Trends Plant Sci. 1997, 2, 144-151.
(3) Fragoso, D. B.; Guedes, R. N. C.; Ladeira, J. A. Selection in
the evolution of resistance to organophosphates in Leucoptera
coffeella. Neotrop. Entomol. 2003, 32, 329-334.
(4) Bernadou, J.; Meunier, B. Biomimetic Chemical Catalysts in the
Oxidative Activation of Drugs. AdV. Synth. Catal. 2004, 346,
171-184.
(5) Meunier, B.; Robert, A.; Pratviel, G. Metalloporphyrins in
catalytic oxidations and oxidative DNA cleavage. In The
Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard,
R., Eds.; Academic Press: New York, 2000; pp 119-187.
(6) Santos, A. C. M. A.; Smith, J. R. L.; Assis, M. D. Chloroquine-
iron(III) tetra-arylporphyrin interactions and their effect on
chloroquine oxidations catalyzed by iron(III) tetra-arylporphyrin.
J. Porphyrins Phthalocyanines 2005, 9, 326-333.
(7) Keseru¨, G. M.; Balogh, G.; Czudor, I.; Karancsi, T.; Fehe´r, A.;
Berto´k, B. Chemical Models of Cytochrome P450 Catalyzed
Insecticide Metabolism. Application to the Oxidative Metabolism
of Carbamate Insecticides. J. Agric. Food Chem. 1999, 47, 762-
769.
(8) Fukushima, M.; Fujisawa, T.; Katagi, T. Tomato Metabolism
and Porphyrin-Catalyzed Oxidation of Pyriproxyfen. J. Agric.
Food Chem. 2005, 53, 5353-5358.
(9) Topal, A.; Adams, N.; Hodgson, E.; Kelly, S. L. In vitro
metabolism of atrazine by tulip cytochrome P450. Chemosphere
1996, 32, 1445-1451.
(10) Hanioka, N.; Jinno, H.; Kitazawa, K.; Tanaka-Kagawa, T.;
Nishimura, T.; Ando, M.; Ogawa, K. In vitro biotransformation
of atrazine by rat liver microsomal cytochrome P450 enzymes.
Chem.-Biol. Interact. 1998, 116, 181-198.
(11) Cherifi, M.; Raveton, M.; Picciocchi, A.; Ravanel, P.; Tissut,
M. Atrazine metabolism in corn seedlings. Plant Physiol.
Biochem. 2001, 39, 665-672.
(12) Ohkawa, H.; Tsujii, H.; Ohkawa, Y. The use of cytochrome P450
genes to introduce herbicide tolerance in crops: a review. Pestic.
Sci. 1999, 55, 867-874.
(28) Fujii, H. Eletronic structure and reactivity of high-valent oxo
iron porphyrin. Coord. Chem. ReV. 2002, 226, 51-60.
(29) Assis, M. D.; Serra, O. A.; Iamamoto, Y.; Nascimento, O. R.
An EPR and electronic spectroscopy study of intermediates in a
mono o-nitro substituted iron porphyrin reaction with iodosyl-
benzene. Inorg. Chim. Acta 1991, 187, 107-114.
(30) Evans, S.; Lindsay-Smith, J. R. The oxidation of ethylbenzene
and other alkylaromatics by dioxygen catalysed by iron(III)
tetrakis(pentafluorophenyl)porphyrin and related iron porphyrins.
J. Chem. Soc., Perkin Trans. 2 2000, 1541-1551.
Received for review August 28, 2006. Revised manuscript received
October 24, 2006. Accepted October 24, 2006. We thank the Brazilian
agencies FAPESP, CNPq, and CAPES for financial support.
(13) Arnold, S. M.; Hickey, W. J.; Harris, R. F. Degradation of
Atrazine by Fenton’s Reagent: Condition Optimization and
Product Quantification. EnViron. Sci. Technol. 1995, 29, 2083-
2089.
JF062462N