pounds called C-glycosides.11 The rich chemistry of gly-
cosyl sulfoxides motivates the development of selective
and efficient methods for their synthesis.
Selective Oxid a tion of Glycosyl Su lfid es to
Su lfoxid es Usin g Ma gn esiu m
Mon op er oxyp h th a la te a n d Micr ow a ve
Ir r a d ia tion
Although several methods for oxidizing sulfides to
sulfoxides or sulfones have been developed,1 very few
are sufficiently selective to terminate oxidation at the
2
Ming-Yi Chen,*,† Laxmikant Narhari Patkar,‡ and
Chun-Cheng Lin*,‡
13
sulfoxide stage and prevent overoxidation to sulfones.
Even fewer methods of synthesizing glycosyl sulfoxides
Institute of Chemistry, Academia Sinica, 128, Sec. 2,
Yen-Chiu-Yuan Road, Nankang, Taipei 115, Taiwan,
and General Education Center, Taipei Nursing College,
Taipei 112, Taiwan
have been investigated.4
,14
The oxidation of glycosyl
sulfides to sulfoxides has most successfully been achieved
4
using m-CPBA (m-chloroperbenzoic acid). However, this
method suffers from a number of shortcomings, including
the requirement that a low temperature be maintained
to prevent overoxidation to sulfone, the partial solubility
of m-CPBA in the solvent, and the difficulty of separating
the byproduct, m-chlorobenzoic acid, from the sulfoxide.
Accordingly, a new highly selective method with mild
reaction conditions and simple workup is required. A few
years ago, one such selective and mild method, using
hydrogen peroxide (30%) as an oxidant in the presence
of silica gel, was reported.1 Very recently, we reported
another selective and mild method that involved silica
gel-supported oxone or tert-butyl hydroperoxide (TBHP)
as an oxidant at room temperature, to oxidize glycosyl
Received November 18, 2003
Ab st r a ct : A protocol that uses moist magnesium mono-
peroxyphthalate (MMPP) as an oxidant under microwave
irradiation rapidly yields a variety of glycosyl sulfoxides from
corresponding sulfides in high yields with high selectivity.
4g
Sulfoxides are an important class of synthetic inter-
mediates used for stereocontrol in the construction of
chemically and biologically important molecules.
1
-3
In
4
15
carbohydrate chemistry, glycosyl sulfoxides constitute
sulfides to sulfoxides. Herein, a protocol, which rapidly
5
as a distinct class of donors for glycosylation because of
generates various glycosyl sulfoxides and improves upon
the selectivity and efficiency of previously reported
methods, is presented. This protocol uses magnesium
monoperoxyphthalate (MMPP) as an oxidant under
microwave irradiation.
6
the mild conditions under which they react, their good
4
,7
to excellent anomeric stereocontrol, and their adapt-
8
abilities in both solution- and solid-phase synthesis.
9
They have been used in preparing oligosaccharides and
glycoconjugates.10 Moreover, the stereochemical outcome
of such glycosylation is independent of the configuration
(
11) Carpintero, M.; Nieto, I.; Fernandez-Mayoralas, A. J . Org.
Chem. 2001, 66, 1768.
12) (a) Procter, D. J . J . Chem. Soc., Perkin Trans. 1 1999, 641 and
4
at sulfur atom, eliminating the need to prepare diaste-
(
reomerically pure gycosyl sulfoxide donor for glycosida-
tion. Apart from glycosyl donors, glycosyl carbanions,
obtained by sulfinyl-lithium exchange, are useful in the
stereospecific construction of an important class of com-
references therein. (b) The Chemistry of Sulphones, Sulphoxides and
Cyclic Sulphides; Patai, S., Rappoport, H., Eds.; Chichester, UK, 1994.
(c) Uemura, S. In Comprehensive Organic Synthesis; Ley, S. V., Ed.;
Pergman; Oxford, 1991; Vol. 7, p 757.
(13) (a) Zen, Z.-M.; Liou, S.-L.; Kumar, A. S.; Hsia, M.-S. Angew.
Chem., Int. Ed. 2003, 42, 577. (b) Shukla, V. G.; Salgaonkar, P. D.;
Akamanchi, K. G. J . Org. Chem. 2003, 68, 5422. (c) Kar, G.; Saikia,
A. K.; Bora, U.; Dehury, S. K.; Chaudhuri, M. K. Tetrahedron Lett.
2003, 44, 4503. (d) Matteucci, M.; Bhalay, G.; Bradley, M. Org. Lett.
2003, 5, 235. (e) Martin, S. E.; Rossi, L. I. Tetrahedron Lett. 2001, 42,
7147. (f) Kropp, P. J .; Breton, G. W.; Fields, J . D.; Tung, J . C.; Loomis,
B. R. J . Am. Chem. Soc. 2000, 122, 4280. (g) Foti, C. J .; Fields, J . D.;
Kropp, P. J . Org. Lett. 1999, 1, 903. (h) Varma, R. S.; Dahiya, R. Synth.
Commun. 1998, 28, 4087. (i) Ali, M. H.; Stevens, W. C. Synthesis 1997,
764. (j) Varma, R. S.; Saini, R. K.; Meshram, H. M. Tetrahedron Lett.
1997, 38, 6525.
(14) (a) Crich, D.; de la Mora, M. A.; Cruz, R. Tetrahedron 2002,
58, 35. (b) Bozo, E.; Demeter, A.; Rill, A.; Kuszmann, J . Tetrahedron:
Asymmetry 2001, 12, 3423. (c) Misbahi, K.; Lardic, M.; Ferrieres, V.;
Noiret, N.; Kerbal, A.; Plusquellec, D. Tetrahedron: Asymmetry 2001,
11, 2389. (d) Skelton, B. W.; Stick, R. V.; Tilbrook, D. M. G.; White, A.
H.; Williams, S. J . Aust. J . Chem. 2000, 53, 389. (e) Noureddine, K.
Tetrahedron Lett. 2000, 41, 9059. (f) Vincent, S. P.; Burkart, M. D.;
Tsai, C.-Y.; Zhang, Z.; Wong, C.-H. J . Org. Chem. 1999, 64, 5264. (g)
Ravikumar, K. S.; Zhang, Y. M.; Begue, J .-P.; Bonnet-Delpon, D. Eur.
J . Org. Chem. 1998, 2937. (h) Ravikumar, K. S.; Zhang, Y. M.; Begue,
J .-P.; Bonnet-Delpon, D. J . Org. Chem. 1947, 12, 2937. (i) Crich, D.;
Sun, S. J . Am. Chem. Soc. 1997, 119, 11217. (j) Noureddine, K.; Ines,
A.; Natividad, R.; Alfonso, F.-M.; J esus, J .-B.; Ofelia, N.; Felix, C.;
Concepcion, F.-F.; Manuel, M.-L. Tetrahedron Lett. 1997, 38, 8267. (k)
Crich, D.; Sun, S.; Brunckova, J . J . Org. Chem. 1996, 61, 4506. (l)
Kakarla, R.; Dukina, R. G.; Hatzenbuhler, N. T.; Hui, Y. W.; Sofia, M.
J . J . Org. Chem. 1996, 61, 8347. (m) Schmidt, R. R.; Kast, J .
Tetrahedron Lett. 1986, 27, 4007.
*
To whom correspondence should be addressed. Fax: +886-2-
2
7835007.
†
Taipei Nursing College.
Academia Sinica.
‡
(1) Durst, T. In Comprehensive Organic Chemistry; Barton, D., Ollis,
W. D., Eds.; Pergamon: Oxford, UK, 1979; Vol. 3, p 121.
2) (a) Carreno, M. C. Chem. Rev. 1995, 95, 1717. (b) Solladie, G.
Synthesis 1981, 185.
3) (a) Ikemoto, N.; Schrieber, S. L. J . Am. Chem. Soc. 1990, 112,
(
(
9
1
657. (b) Berkowitz, D. B.; Danishefsky, S. J . Am. Chem. Soc. 1992,
14, 4518.
(4) Kahne, D.; Walker, S.; Cheng, Y.; van Engen, D. J . Am. Chem.
Soc. 1989, 111, 6881.
(
5) Sears, P.; Wong, C.-H. Science 2001, 291, 2344.
(6) Thompson, C.; Ge, M.; Kahne, D. J . Am. Chem. Soc. 1999, 121,
1
237.
7) (a) Crich, D.; Sun, S. J . Org. Chem. 1997, 62, 1198. (b) Crich,
D.; Sun, S. Tetrahedron 1998, 54, 8321.
8) (a) Kahne, D.; Raghavan, S. J . Am. Chem. Soc. 1993, 115, 1580.
b) Yan, L.; Taylor, C. M.; Goodnow, R.; Kahne, D. J . Am. Chem. Soc.
994, 116, 6953.
9) (a) Crich, D.; Dai, Z. Tetrahedron 1999, 55, 1569. (b) Yan, L.;
(
(
(
1
(
Kahne, D. J . Am. Chem. Soc. 1996, 118, 9239. (c) Zhang, H.; Wang,
Y.; Voelter, W Tetrahedron Lett. 1995, 36, 1243. (d) Kim, S.-H.; Augeri,
D.; Yang, D.; Kahne, D. J . Am. Chem. Soc. 1994, 116, 1766.
(10) (a) Boeckman, R. K., J r.; Liu, Y. J . Org. Chem. 1996, 61, 7984.
(
b) Gildersleeve, J .; Smith, A.; Sakurai, K.; Raghavan, S.; Kahne, D.
J . Am. Chem. Soc. 1999, 121, 6176. (c) Ikemoto, N.; Schrieber, S. L. J .
Am. Chem. Soc. 1992, 114, 2524. (d) Taylor, C. M.; Weir, C. A.;
J orgensen, C. G. Aust. J . Chem. 2002, 55, 135.
(15) Chen, M.-Y.; Patkar, L. N.; Chen, H.-T.; Lin, C.-C. Carbohydr.
Res. 2003, 338, 1327.
1
0.1021/jo035698o CCC: $27.50 © 2004 American Chemical Society
Published on Web 03/11/2004
2
884
J . Org. Chem. 2004, 69, 2884-2887