C O M M U N I C A T I O N S
CARE grant from Los Alamos National Laboratory to P.C.F. and
G.F.S., and a National Institutes of Health grant (NBIB 7 R01
EB000832) to G.F.S. We thank Roberto da Silva for stimulating
discussions and technical help.
Supporting Information Available: Experimental procedures for
preparation of QDs and for evaluating NO photoproduction. Figure
comparing the solution spectra of 1 and the QDs. This material is
References
Figure 2. Detection of NO photochemically produced from 1 (200 µM)
in stirred buffer solutions (15 mM, pH 8.2) with (circles) and without
(squares) added QDs (100 nM). At the time designated, a 100 µL aliquot
from a stock solution of 1 was injected into the stirred solution. The
excitation source was a Hg arc lamp (320-390 nm band-pass filter), and
NO was detected with an amiNO-700 Innovative Instruments electrode.
(1) Ignarro, L. J., Ed. Nitric Oxide: Biology and Pathobiology; Academic
Press: San Diego, CA, 2000, and references therein.
(2) Examples: (a) Maragos, C. M.; Morley, D.; Wink, D. A.; Dunams, T.;
Saavedra, J. E.; Hoffman, A.; Bove, A. A.; Isaac, L.; Hrabie, J. A.; Keefer,
L. K. J. Med. Chem. 1991, 34, 3242-3247. (b) Wang, P. G.; Xian, M.;
Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. ReV. 2002,
102, 1091-1134. (c) King, S. B. Cur. Top. Med. Chem. 2005, 5, 665-
673. (d) Wheatley, P.; Butler, A. R.; Crane, M.; Fox, S.; Xiao, B.; Rossi,
A.; Megson, I. L.; Morris, R. E. J. Am. Chem. Soc. 2006, 128, 502-509.
(3) Examples: (a) Bourassa, J.; DeGraff, W.; Kudo, S.; Wink, D. A.; Mitchell,
J. B.; Ford, P. C. J. Am. Chem. Soc. 1997, 119, 2853-2860. (b) Ford, P.
C.; Bourassa, J.; Miranda, K. M.; Lee, B.; Lorkovic, I.; Boggs, S.; Kudo,
S.; Laverman, L. Coord. Chem. ReV. 1998, 171, 185-202. (c) Tfouni,
E.; Krieger, M.; McGarvey, B. R.; Franco, D. W. Coord. Chem. ReV.
2003, 236, 57-69. (d) Pavlos, C. M.; Xu, H.; Toscano, J. P. Curr. Top.
Med. Chem. 2005, 5, 635-645. (e) Eroy-Reveles, A A.; Leung, Y.;
Mascharak, P. K. J. Am. Chem. Soc. 2006, 128, 7166-7167.
(4) (a) Conrado, C. L.; Wecksler, S.; Egler, C.; Magde, D.; Ford, P. C. Inorg.
Chem. 2004, 43, 5543-5549. (b) DeRosa, F.; Bu, X.; Ford, P. C. Inorg.
Chem. 2005, 44, 4157-4165 and references therein.
chemical NO generation was small (Figure 2). However, the
otherwise identical experiment where the cuvette PB solution also
contained water-soluble QDs (100 nM) gave a dramatically stronger
NO response. While, in both cases, introduction of 1 to the solution
being irradiated results in a positive response, the maximum of the
NO-dependent signal was considerably higher (∼6-fold) when the
QDs were present. Notably, addition of QDs alone to the irradiated
buffer solution (data not shown) did not elicit a response from the
electrode. These results indicate that NO production from 1 is much
faster when the QD antennas are present due to the enhanced light
harvesting ability of that system (Scheme 2).
The effect of the QDs in enhancing photochemical NO produc-
tion can be attributed to the dramatically higher extinction coef-
ficients of the QDs (>103 as large as for 1) as illustrated in the
Supporting Information. For the experiment described above, the
absorbance is dominated by the QD chromophores across the
excitation wavelength range, where they absorb 2-10 times as
much light as does 1, despite the huge concentration differences
(100 nM vs 200 µM). The enhanced NO photoproduction from 1
indicates that optical excitation of the QDs results in photosensi-
tization of 1.
These results demonstrate that QDs can function effectively as
antennas for photochemical reactions of complexes that are
electrostatically bound near the QD surfaces. This brings us a step
closer to using such photoactive transition-metal-based NO donors
as prodrugs. The current study represents the first example using
water-soluble semiconductor QDs as photoactivators for drug
delivery that targets the hypoxic environment often encountered in
tumor cells.2b In vivo applications will likely require long wave-
length excitation (red or near-infrared) for effective tissue penetra-
tion, possibly via TPE methods for which QDs are well suited.
Furthermore, recent developments utilizing QDs for bioimaging
show that specific targeting strategies can be effective.10 In these
contexts, modified QDs have considerable promise as site-specific
agents for photochemical drug delivery, and the present paper
demonstrates that QDs can serve as the sensitizers for photochemical
NO delivery. Further studies to develop QD/NO donor constructs,
including those involving covalent linkages between these com-
ponents for potential application as photochemical drugs, are
continuing in this laboratory.
(5) Wecksler, S. R.; Mikhailovsky, A.; Korystov, D.; Ford, P. C. J. Am. Chem.
Soc. 2006, 128, 3831-3837.
(6) (a) Leatherdale, C. A.; Woo, W.; Mikulec, F. V.; Bawendi, M. G. J. Phys.
Chem. B 2002, 106, 7619-7622. (b) Schmelz, O.; Mews, A.; Basche´, T.;
Herrmann, A.; Mu¨llen, K. Langmuir 2001, 17, 2861-2865. (c) Yu, W.;
Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854-2860.
(7) Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M.
P.; Wise, F. W.; Webb, W. W. Science 2003, 300, 1434-1436.
(8) Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226-13239.
(9) Petruska, M. A.; Bartko, A. P.; Klimov, V. I. J. Am. Chem. Soc. 2004,
126, 714-715.
(10) Examples: (a) Gao, X.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons,
J. W.; Nie, S. Curr. Opin. Biotechnol. 2005, 16, 63-72 and references
therein. (b) Delehanty, J. B.; Medintz, I. L.; Pons, T.; Brunel, F. M.;
Dawson, P. E.; Mattoussi, H. Bioconjugate Chem. 2006, 17, 920-927.
(11) (a) Rothrock, A. R.; Donkers, R. L.; Schoenfisch, M. H. J. Am. Chem.
Soc. 2005, 127, 9362-9363. (b) Caruso, E. B.; Petralia, S.; Conoci, S.;
Giuffrida, S.; Sortino, S. J. Am. Chem. Soc. 2007, 129, 480-481.
(12) (a) Wijtmans, M.; Rosenthal, S. J.; Zwanenburg, B.; Porter, N. A J. Am.
Chem. Soc. 2006, 128, 11720-11726. (b) Warrier, M.; Lo, M. K. F.;
Monbouquette, H.; Garcia-Garibay, M. A. Photochem. Photobiol. Sci.
2004, 3, 859-863.
(13) (a) Samia, A. C. S.; Chen, X.; Burda, C. J. Am. Chem. Soc. 2003, 125,
15736-15737. (b) Shi, L.; Hernandez, B.; Selke, M. J. Am. Chem. Soc.
2006, 128, 6278-6279. (c) Clarke, S.; Hollmann, C. A.; Zhang, Z.;
Suffern, D.; Bradforth, S. E.; Dimitrijevic, N. M.; Minarik, W. G.; Nadeau,
J. L. Nat. Mater. 2006, 5, 409-417.
(14) (a) Sykora, M.; Petruska, M. A.; Alstrum-Acevedo, J.; Bezel, I.; Meyer,
T. J.; Klimov, V. I. J. Am. Chem. Soc. 2006, 128, 9984-9985. (b) Sharma,
S. N.; Pillai, Z.; Kamat, P. V. J. Phys. Chem. B 2003, 107, 10088-10093.
(15) DeLeo, M. A.; Ford, P. C. J. Am. Chem. Soc. 1999, 121, 1980-1981.
(16) (a) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993,
115, 8706-8715. (b) de Mello Donega, C.; Hickey, S. G.; Wuister, S.;
Vanmaekelbergh, D.; Meijerink, A. J. Phys. Chem. B 2003, 107, 489-
496 and references therein.
(17) Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.;
Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B
1997, 101, 9463-9475.
(18) Mikulec, F. V.; Kuno, M.; Bennati, M.; Hall, D. A.; Griffin, R. G.;
Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 2532-2540.
(19) Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar,
V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122,
12142-12150.
(20) Concentrations are estimated from the size-dependent extinction coefficient
of the first excitonic transition determined in ref 6c, assuming the ZnS
shell and ligand exchange have no effect.
(21) Neuman, D.; Ostrowski, A. D.; Mikhailovsky, A. A.; Absalonson R. O.;
Strouse, G. F.; Ford, P. C. Manuscript in preparation.
Acknowledgment. These studies were supported by a National
Science Foundation grant to P.C.F. (CHE-0352650), by a UC-
JA070490W
9
J. AM. CHEM. SOC. VOL. 129, NO. 14, 2007 4147