Communications
[16] Generation of ZnPh2 from PhLi and ZnBr2 followed by
filtration through Celite and addition of dimethoxy poly(ethy-
lene glycol) (to inhibit traces of remaining LiBr) and addition to
4-chlorobenzaldehyde afforded the diaryl methanol in up to
93% enantioselectivity in 8–31% yield; see: J. Rudolph, N.
Hermanns, C. Bolm, J. Org. Chem. 2004, 69, 3997.
[17] M. Kitamura, S. Okada, S. Suga, R. Noyori, J. Am. Chem. Soc.
1989, 111, 4028.
[18] D. Hoffmann, A. Dorigo, P. von R. Schleyer, H. Reif, D. Stalke,
G. M. Sheldrick, E. Weiss, M. Geissler, Inorg. Chem. 1995, 34,
262.
[19] S. Chitsaz, J. Pauls, B. Neumüller, Z. Naturforsch. B 2001, 56,
245.
[20] P. I. Dosa, J. C. Ruble, G. C. Fu, J. Org. Chem. 1997, 62, 444.
[21] W.-S. Huang, L. Pu, J. Org. Chem. 1999, 64, 4222.
[22] J. Rudolph, C. Bolm, P.-O. Norrby, J. Am. Chem. Soc. 2005, 127,
1548.
[23] C. Bolm, N. Hermanns, J. P. Hildebrand, K. Muæiz, Angew.
Chem. 2000, 112, 3607; Angew. Chem. Int. Ed. 2000, 39, 3465.
[24] C. Bolm, M. Kesselgruber, N. Hermanns, J. P. Hildebrand, G.
Raabe, Angew. Chem. 2001, 113, 1536; Angew. Chem. Int. Ed.
2001, 40, 1488.
Experimental Section
Preparation of (4-fluorophenyl-4-methoxyphenyl)methanol (Table 3,
entry 7): A nitrogen-purged Schlenk flask was charged with 4-
bromoanisole (100.1 mL, 0.8 mmol) and tBuOMe (1 mL) and cooled
to À788C. Freshly titrated nBuLi (0.32 mL, 2.5m in hexanes,
0.8 mmol) was added dropwise, and the solution was stirred for 1 h.
The dry-ice bath was replaced with an ice bath, ZnCl2 (114.5 mg,
0.84 mmol) was added, and the reaction mixture was stirred for
30 min. Additional nBuLi (0.32 mL, 2.5m in hexanes, 0.8 mmol) was
added to the reaction mixture, which was then stirred for 4.5 h at
room temperature. Toluene (5 mL) and TEEDA (68 mL, 0.32 mmol)
were added, and the solution was stirred for 1 h. After the addition of
(À)-MIB (4.8 mg, 0.02 mmol, 5 mol%), the reaction cooled to 08C for
30 min, and p-fluorobenzaldehyde (43 mL, 0.4 mmol) was added. The
reaction was stirred at 08C and monitored by TLC. After completion
(18 h), the reaction mixture was quenched with H2O (20 mL) and
extracted with ethyl acetate (3 20 mL). The organic layer was dried
over MgSO4, filtered, and the solvent was removed under reduced
pressure. The crude product was purified by column chromatography
on silica gel (hexanes/EtOAc, 95:5) to give the product (77.7 mg, 84%
yield, 93% ee) as a white solid. M.p. 528C; [a]2D0 = (+)13.846( c =
0.195, THF); 1H NMR (C6D6, 300 MHz): d = 2.17 (s, 1H), 3.38 (s,
3H), 5.50 (s, 1H), 6.81–6.95 (m, 4H), 7.17–7.29 (m, 4H) ppm; 13C{1H}
NMR (C6D6, 75 MHz): 55.0, 75.3, 114.3, 115.4 (d, J = 21.2 Hz), 128.4,
128.7 (d, J = 8.0 Hz), 136.9, 141.0 (d, J = 3.0 Hz), 159.7, 162.6 ppm (d,
J = 243 Hz); IR (neat): n˜ = 3421, 2957, 2837, 1609, 1504, 1248, 1033,
[25] C. Bolm, N. Hermanns, M. Kesselgruber, J. P. Hildebrand, J.
Organomet. Chem. 2001, 624, 157.
[26] S. Ozcubukcu, F. Schmidt, C. Bolm, Org. Lett. 2005, 7, 1407.
[27] J. Rudolph, T. Rasmussen, C. Bolm, P.-O. Norrby, Angew. Chem.
2003, 115, 3110; Angew. Chem. Int. Ed. 2003, 42, 3002.
[28] M. Fontes, X. Verdaguer, L. Solꢀ, M. A. Pericꢀs, A. Riera, J. Org.
Chem. 2004, 69, 2532
831 cmÀ1
;
HRMS calcd for C13H13FO2 [M]+: 232.0900, found:
232.0900; determination conditions for the ee: Chiralpak AS-H,
hexanes/isopropylamine (95:5), flow rate = 0.5 mLminÀ1
,
t =
[29] B. P. Klaholz, A. Mitschler, D. Moras, J. Mol. Biol. 2000, 302, 155.
[30] K. L. Yu, P. Spinazze, J. Ostrowski, S. J. Currier, E. J. Pack, L.
Hammer, T. Roalsvig, J. A. Honeyman, D. R. Tortolani, P. R.
Reczek, M. M. Mansuri, J. E. Starrett, J. Med. Chem. 1996, 39,
2411.
20.0 min, 22.1 min.
Received: February 26, 2006
Published online: May 24, 2006
[31] S. M. Thacher, J. Vasudevan, R. A. S. Chandraratna, Curr.
Pharm. Des. 2000, 6, 25.
[32] R. Noyori, M. Yamakawa, S. Hashiguchi, J. Org. Chem. 2001, 66,
7931
[33] E. J. Corey, C. J. Helal, Tetrahedron Lett. 1996, 37, 4837.
[34] T. Ohkuma, M. Koizumi, H. Ikehira, T. Yokozawa, R. Noyori,
Org. Lett. 2000, 2, 659.
[35] E. J. Corey, C. J. Helal, Tetrahedron Lett. 1995, 36, 9153.
[36] H. Ushio, K. Mikami, Tetrahedron Lett. 2005, 46, 2903.
Keywords: addition reactions · alcohols · aldehydes ·
asymmetric catalysis · zinc reagents
.
[1] C. Bolm, J. P. Hildebrand, K. Muæiz, N. Hermanns, Angew.
Chem. 2001, 113, 3382; Angew. Chem. Int. Ed. 2001, 40, 3284.
[2] A. Ebnother, H.-P. Weber, Helv. Chim. Acta 1976, 59, 2462.
[3] A. F. Casy, A. F. Drake, C. R. Ganellin, A. D. Mercer, C. Upton,
Chirality 1992, 4, 356.
[4] P. Müller, P. Nury, G. Bernardinelli, Eur. J. Org. Chem. 2001,
4137.
[5] M. N. G. James, G. J. B. Williams, Can. J. Chem. 1974, 52, 1872.
[6] A. Shafi’ee, G. Hite, J. Med. Chem. 1969, 12, 266.
[7] A. Torrens, J. A. Castrillo, A. Claparols, J. Redondo, Synlett
1999, 765.
[8] V. Barouh, H. Dall, D. Patel, G. Hite, J. Med. Chem. 1971, 14,
834.
[9] C. Bolm, J. Rudolph, J. Am. Chem. Soc. 2002, 124, 14850.
[10] J. Rudolph, F. Schmidt, C. Bolm, Synthesis 2005, 840.
[11] D. Tomita, R. Wada, M. Kanai, M. Shibasaki, J. Am. Chem. Soc.
2005, 127, 4138.
[12] Two additions of aryl groups to aldehydes beginning from aryl
bromides are reported; each gave less than 10% enantioselec-
tivity; see: B. Weber, D. Seebach, Tetrahedron 1994, 50, 7473.
[13] Seebach reported that transmetalation of PhLi with [TiCl-
(OiPr)3] and addition to benzaldehydes gave high enantioselec-
tivities only if the reactions were subject to centrifugation to
remove LiCl and the addition of 30 mol% of [12]crown-4 to
inhibit the remaining LiCl; see reference [12].
[14] W. A. Nugent, Chem. Commun. 1999, 1369.
[15] Y. K. Chen, S. J. Jeon, P. J. Walsh, W. A. Nugent, Org. Synth.
2005, 82, 87.
4178
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 4175 –4178