Asymmetric Oxidation of Sulfides to Sulfoxides
J . Org. Chem., Vol. 64, No. 10, 1999 3523
2a -i were measured by chiral HPLC analysis: Daicel Chiral-
pak AD, Chiralcel OD, and Chiralcel OJ columns using a UV/
vis detector or a multiwavelength detector.
Di(2-m eth oxy)ben zoyl-L-ta r ta r ic Acid (3b). Chiral dia-
cyltartaric acids were easily prepared in a manner similar to
Yamamoto’s method16 in good yields.
(d, 2H, J ) 8.7 Hz); 13C NMR δ 43.8, 124.4, 124.6, 149.3, 153.1.
Daicel Chiralpak AD column at λ ) 287 nm, n-hexane/2-propa-
nol (94:6) as eluent and a flow rate of 1.0 mL/min: tR (S) )
48.7 min, tR (R) ) 56.8 min, ee ) 72%; [R]25D -112.4 (c ) 1.32,
CHCl3) (lit.17c ((R)-2b; 99.3% ee); [R]D +156.9 (c ) 0.75, CHCl3)).
(S)-Meth yl 3-n itr op h en yl su lfoxid e (2c): a colorless
1
P r ep a r a tion of 3b. To a stirred suspension of dibenzyl-L-
tartarate (200 mg, 0.606 mmol) and 2-methoxybenzoic acid
(313 mg, 2.06 mmol) in benzene (4 mL) was added dropwise
trifluoroacetic anhydride (0.324 mL, 2.24 mmol) over 10 min
at room temperature and the mixture stirred for 1 h. To the
reaction mixture was added aqueous saturated NaHCO3 at 0
°C, and then the resulting mixture was extracted with Et2O.
The organic layer was washed with brine, dried over Na2SO4,
and evaporated. The residue was purified by column chroma-
tography (SiO2/n-hexane/Et2O/CH2Cl2 ) 6:1:5) to give dibenzyl-
L-di(2-methoxy)benzoyltartarate 3′b (362 mg, quant) as a
colorless oil.
crystal; H NMR δ 2.82 (s, 3H), 7.78 (t, 1H, J ) 7.9 Hz), 8.02
(d, 1H, J ) 7.7 Hz), 8.37 (d, 1H, J ) 7.7 Hz), 8.51 (s, 1H); 13
NMR δ 44.0, 118.9, 125.7, 129.2, 130.6, 148.6, 148.7.
C
Daicel Chiralcel OJ column at λ ) 243 nm, n-hexane/2-pro-
panol (9:1) as eluent and a flow rate of 1.0 mL/min: tR (R) )
52.6 min, tR (S) ) 59.3 min, ee ) 64%; [R]25 -98.2 (c ) 0.85,
D
CHCl3). Although the ee value of the literature3d was deter-
mined by 1H NMR using a chiral shift reagent, we determined
the ee value of 2c by HPLC analysis. (In our case, 71% ee
was observed by NMR study as described in the litera-
ture.3d
)
(S)-Eth yl 4-n itr op h en yl su lfoxid e (2d ): a colorless crys-
tal; 1H NMR δ 1.17 (t, 3H, J ) 7.5 Hz), 2.69-2.76 (m, 1H),
2.93-2.99 (m, 1H), 7.73 (d, 2H, J ) 8.9 Hz), 8.32 (d, 2H, J )
8.9 Hz); 13C NMR δ 5.6, 50.1, 124.2, 125.2, 149.4, 150.9. Daicel
Chiralcel OD column at λ ) 291 nm, n-hexane/2-propanol (9:
1) as eluent and a flow rate of 0.5 mL/min: tR (R) ) 48.9 min,
3′b: 1H NMR δ 3.81 (s, 6H), 5.14 (s, 4H), 6.00 (s, 2H), 6.85-
6.93 (m, 4H), 7.12-7.22 (m, 10H), 7.45 (t, 2H, J ) 7.9 Hz),
7.78 (d, 2H, J ) 7.7 Hz); 13C NMR δ 55.8, 67.6, 71.1, 111.8,
117.7, 119.9, 128.0, 128.1, 128.2, 132.3, 134.2, 134.6, 159.8,
163.8, 165.5; IR (KBr) 1775, 1740, 1715, 1600 cm-1; [R]25
)
D
tR (S) ) 52.0 min, ee ) 57%; [R]25 -107.5 (c ) 1.65, CHCl3).
-13.1 (c 12.88, CHCl3). Anal. Calcd for C34H30O10: C, 68.22;
H, 5.05. Found: C, 67.99; H, 5.21.
D
The literature17b shows the enantiomeric resolution of racemic
2d using a chiral column.
The solution of 3′b (349 mg, 0.583 mmol) in AcOEt (13 mL)
was hydrogenated by Pd-black (70.0 mg) under hydrogen
atmosphere at 3 atm at room temperature. After 2 h, the
mixture was filtered with Celite, and the filtrate was concen-
trated and recrystallized from CHCl3 to give pure 3b (243 mg,
quant) as colorless needles.
(S)-4-Cya n op h en yl m et h yl su lfoxid e (2e): a colorless
crystal; 1H NMR δ 2.78 (s, 3H), 7.78 (d, 2H, J ) 8.5 Hz), 7.85
(d, 2H, J ) 8.5 Hz); 13C NMR δ 43.8, 114.6, 117.6, 124.2, 132.8,
151.3. Daicel Chiralcel OJ column at λ ) 267 nm, n-hexane/
2-propanol (9:1) as eluent and a flow rate of 1.0 mL/min: tR
1
3b: mp 187 °C dec (from CHCl3); H NMR δ 3.36 (br, 2H),
(R) ) 53.5 min, tR (S) ) 59.6 min, ee ) 65%; [R]25 -89.4 (c )
D
3.80 (s, 6H), 5.92 (s, 2H), 6.87-6.90 (m, 4H), 7.42 (t, 2H, J )
7.6 Hz), 7.89 (d, 2H, J ) 7.6 Hz); 13C NMR δ 55.9, 71.3, 112.0,
118.1, 120.1, 132.4, 134.3, 159.8, 164.2, 167.8; IR (KBr) 3235,
1775, 1740, 1715, 1600 cm-1; [R]25D ) -115.3 (c 7.13, acetone).
Anal. Calcd for C20H18O10: C, 57.42; H, 4.34. Found: C, 57.03;
H, 4.45.
1.12, EtOH) (lit.17d ((S)-2e; 92% ee); [R]D -120 (c ) 1.07,
EtOH)).
(S)-4-Br om op h en yl m eth yl su lfoxid e (2f): a colorless
crystal; 1H NMR δ 2.72 (s, 3H), 7.52 (d, 2H, J ) 8.7 Hz), 7.67
(d, 2H, J ) 8.7 Hz); 13C NMR δ 43.9, 125.0, 125.3, 132.4, 144.7.
Daicel Chiralcel OD column at λ ) 252 nm, n-hexane/2-
propanol (99:1) as eluent and a flow rate of 0.8 mL/min: tR
Gen er a l P r oced u r e for Asym m etr ic Oxid a tion of Su l-
fid es. To a stirred suspension of CTAB (0.04 mmol) and 3b
(0.02 mmol) in toluene (5.0 mL) and H2O (0.10 mL) was added
PhIO2 (0.10 mmol), and the mixture was stirred for 1 h. Then,
a solution of sulfide 1 (0.20 mmol) in toluene (1.0 mL) was
added to the stirred suspension and was stirred for 2-48 h.
The reaction mixture was quenched by the addition of aqueous
saturated NaHCO3 and then extracted with AcOEt, dried over
MgSO4, filtered, and evaporated. The residue was purified by
column chromatography (SiO2/CH2Cl2/acetone ) 4:1) to give
pure sulfoxide 2, the enantiomeric excess of which was deter-
mined by HPLC. Absolute configurations were assigned by
comparison of the sign of specific rotation with literature
data.17
(R) ) 85.1 min, tR (S) ) 89.3 min, ee ) 58%; [R]25 -75.7 (c )
D
1.50, CHCl3) (lit.3g ((S)-2f; 79% ee); [R]D -105.2 (c ) 0.44,
CHCl3)).
(S)-p-An isyl m eth yl su lfoxid e (2g): a colorless oil; 1H
NMR δ 2.70 (s, 3H), 3.86 (s, 3H), 7.03 (d, 2H, J ) 8.9 Hz),
7.60 (d, 2H, J ) 8.9 Hz); 13C NMR δ 43.9, 55.5, 114.8, 125.4,
136.5, 161.9. Daicel Chiralcel OD column at λ ) 243 nm,
n-hexane/2-propanol (9:1) as eluent and a flow rate of 1.0 mL/
min: tR (R) ) 15.8 min, tR (S) ) 17.3 min, ee ) 46%; [R]25
D
-81.5 (c ) 1.12, CHCl3) (lit.17c ((R)-2g; 99.5% ee); [R]D +165.9
(c ) 0.38, CHCl3)).
(S)-Meth yl 2-n a p h th yl su lfoxid e (2h ): a colorless crystal;
1H NMR δ 2.73 (s, 3H), 7.51-7.54 (m, 3H), 7.85-7.93 (m, 3H),
8.15 (s, 1H); 13C NMR δ 43.7, 119.3, 123.9, 127.3, 127.7, 128.0,
128.4, 129.5, 132.8, 134.3, 142.6. Daicel Chiralpak AD column
at λ ) 223 nm, n-hexane/2-propanol (95:5) as eluent and a flow
rate of 0.5 mL/min: tR (R) ) 64.5 min, tR (S) ) 69.5 min, ee )
51%; [R]25D -69.9 (c ) 1.38, acetone) (lit.17c ((R)-2h ; 77.5% ee);
[R]D +102.6 (c ) 1.9, acetone)).
To confirm the reproducibility of the asymmetric oxidation
of sulfides, these reactions were run at least twice. The condi-
tions to determine the ee values and [R]D values are as follows:
(S)-Meth yl p-tolyl su lfoxid e (2a ): a colorless crystal; 1H
NMR δ 2.42 (s, 3H), 2.71 (s, 3H), 7.33 (d, 2H, J ) 8.1 Hz),
7.54 (d, 2H, J ) 8.1 Hz); 13C NMR δ 21.4, 44.0, 123.4, 129.9,
141.3, 142.3. Daicel Chiralcel OD column at λ ) 243 nm,
n-hexane/2-propanol (9:1) as eluent and a flow rate of 1.0 mL/
(S)-1-Th ia in d a n e 1-oxid e (2i): a colorless oil; 1H NMR δ
3.23-3.41 (m, 3H), 3.82-3.90 (m, 1H), 7.40-7.54 (m, 3H), 7.84
(d, 1H, J ) 7.5 Hz); 13C NMR δ 31.4, 52.7, 126.0, 126.7, 128.2,
132.3, 143.1, 144.7. Daicel Chiralpak AD column at λ ) 267
nm, n-hexane/2-propanol (9:1) as eluent and a flow rate of 1.0
min: tR (R) ) 10.5 min, tR (S)) 11.3 min, ee ) 53%; [R]25
D
-75.8 (c ) 1.22, CHCl3) (lit.17c ((R)-2a ; 99.5% ee); [R]D +145 (c
) 0.75, CHCl3)).
(S)-Meth yl 4-n itr op h en yl su lfoxid e (2b): a colorless
crystal; 1H NMR δ 2.77 (s, 3H), 7.84 (d, 2H, J ) 8.7 Hz), 8.40
mL/min: tR (S) ) 16.3 min, tR (R) ) 19.3 min, ee ) 38%; [R]25
D
+110.3 (c ) 0.787, acetone) (lit.17a ((R)-2i; 2.6% ee); [R]D -7.3
(c ) 1.10, acetone), lit.17e((R)-2i; 99% ee); [R]D -285 (c ) 1.5,
acetone)).
(16) Ishihara, K.; Gao, Q.; Yamamoto, H. J . Org. Chem. 1993, 58,
6917-6919.
(17) (a) Takata, T.; Yamazaki, M.; Fujimori, K.; Kim, Y.-H.; Oae,
S.; Iyanagi, T. Chem. Lett. 1980, 1441-1444. (b) Gargaro, G.; Gaspar-
rini, F.; Misiti, D.; Palmieri, G.; Pierini, M.; Villani, C. Chromatograph-
ia 1987, 24, 505-509. (c) Brunel, J .-M.; Diter, P.; Duetsch, M.; Kagan,
H. B. J . Org. Chem. 1995, 60, 8086-8088. (d) Holland, H. L.;
Bornmann, M. J .; Lakshmaiah, G. J . Mol. Catal. B: Enzymatic 1 1996,
97-102. (e) Allenmark, S. G.; Anderson, M. A. Tetrahedron: Asym-
metry 1996, 7, 1089-1094.
Ack n ow led gm en t. This research was supported in
part by a Grant-in-Aid for Scientific Research from the
Ministry of Education, Science and Culture, J apan.
J O982295T