Angewandte
Chemie
[6] E. G. Mata, Phosphorus Sulfur Relat. Elem. 1996, 117, 231 – 286.
methyl phenyl sulfoxide (4a; 87%, 93% ee). The oxidation
was also performed on the same scale using methyl para-tolyl
sulfide (3b), to give (R)-methyl para-tolyl sulfoxide (4b;
82%, > 99.5% ee after one recrystallization from Et2O/
hexane), and methyl para-bromophenyl sulfide (3g), to
give (R)-methyl para-bromophenyl sulfoxide (4g; 77%,
> 99.5% ee after one recrystallization from Et2O/hexane).
In these latter two cases, the efficiency of the process was even
higher than that observed on a small scale.
The combination of very high ee values with high yield,
the consequence of an efficient initial asymmetric oxidation
followed by an efficient kinetic resolution process, makes this
system very practical for the catalytic asymmetric oxidation of
simple alkyl aryl sulfides. Both enantiomers of ligand 2 are
easily prepared on a multigram scale from commercially
available precursors, and the ligands may be stored at room
temperature on the open bench without any special precau-
tions.
[7] D. R. Boyd, N. D. Sharma, S. A. Haughey, M. A. Kennedy, B. T.
McMurray, G. N. Sheldrake, C. C. R. Allen, H. Dalton, K.
Sproule, J. Chem. Soc. Perkin Trans. 1 1998, 1929 – 1933.
[8] K. Kaczorowska, Z. Kolarska, K. Mitka, P. Kowalski, Tetrahe-
dron 2005, 61, 8315 – 8327.
[9] H. B. Kagan, T. O. Luukas, in Transition Metals for Organic
Synthesis, Vol. 2, 2nd ed. (Eds.: M. Beller, C. Bolm), Wiley-
VCH, Weinheim, 2004, pp. 479 – 495.
[10] K. P. Volcho, N. F. Salakhutdinov, A. G. Tolstikov, Russ. J. Org.
Chem. 2003, 39, 1537 – 1552.
[11] C. Bolm, Coord. Chem. Rev. 2003, 237, 245 – 256.
[12] P. Pitchen, E. Duæach, M. N. Deshmukh, H. B. Kagan, J. Am.
Chem. Soc. 1984, 106, 8188 – 8193.
[13] P. Pitchen, H. B. Kagan, Tetrahedron Lett. 1984, 25, 1049 – 1052.
[14] F. DiFuria, G. Modena, R. Seraglia, Synthesis 1984, 325 – 326.
[15] C. Bolm, F. Bienewald, Angew. Chem. 1995, 107, 2883 – 2885;
Angew. Chem. Int. Ed. Engl. 1995, 34, 2640 – 2642.
[16] C. Bolm, G. Schlingloff, F. Bienewald, J. Mol. Catal. A 1997, 117,
347 – 350.
[17] A. H. Vetter, A. Berkessel, Tetrahedron Lett. 1998, 39, 1741 –
1744.
[18] J. Skarzewski, E. Ostrycharz, R. Siedlecka, Tetrahedron: Asym-
metry 1999, 10, 3457 – 3461.
[19] Y. C. Jeong, S. Choi, Y. D. Hwang, K. H. Ahn, Tetrahedron Lett.
2004, 45, 9249 – 9252.
[20] C. Ohta, T. Katsuki, Tetrahedron Lett. 2001, 42, 3885 – 3888.
[21] N. N. Karpyshev, O. D. Yakovleva, E. P. Talsi, K. P. Bryliakov,
O. V. Tolstikova, A. G. Tolstikov, J. Mol. Catal. A 2000, 157, 91 –
95.
[22] D. A. Cogan, G. C. Liu, K. J. Kim, B. J. Backes, J. A. Ellman, J.
Am. Chem. Soc. 1998, 120, 8011 – 8019.
[23] S. A. Blum, R. G. Bergman, J. A. Ellman, J. Org. Chem. 2003, 68,
150 – 155.
[24] K. P. Bryliakov, N. N. Karpyshev, S. A. Fominsky, A. G. Tolsti-
kov, E. P. Talsi, J. Mol. Catal. A 2001, 171, 73 – 80.
[25] D. Balcells, F. Maseras, G. Ujaque, J. Am. Chem. Soc. 2005, 127,
3624 – 3634.
[26] J. T. Sun, C. J. Zhu, Z. Y. Dai, M. H. Yang, Y. Pan, H. W. Hu, J.
Org. Chem. 2004, 69, 8500 – 8503.
[27] B. Pelotier, M. S. Anson, I. B. Campbell, S. J. F. Macdonald, G.
Priem, R. F. W. Jackson, Synlett 2002, 1055 – 1060.
[28] J. Legros, C. Bolm, Angew. Chem. 2003, 115, 5645 – 5647; Angew.
Chem. Int. Ed. 2003, 42, 5487 – 5489.
Experimental Section
Typical large-scale asymmetric oxidation procedure for the prepara-
tion of (R)-4b: A solution of [VO(acac)2] (159.0 mg, 0.60 mmol) in
chloroform (15 mL) was added to a solution of (R)-2 (425.8 mg,
0.90 mmol) in chloroform (15 mL) and the reaction mixture was
stirred for 2 h. A solution of 3b (8.29 g, 60.0 mmol) in chloroform
(30 mL) was added and the reaction mixture stirred for 30 min at
room temperature before cooling it to 08C. After 30 min, 30% H2O2
(7.36 mL, 72.0 mmol) was added to the reaction mixture, which was
stirred vigorously at 08C for 48 h. Samples (1–2 mL) were then
removed at different times and diluted with 20% isopropanol/
heptane for analysis by HPLC. The reaction was quenched with 10%
Na2S2O3 solution (200 mL) and the mixture extracted with chloro-
form (3 100 mL). The extracts were combined, washed with brine
(3 100 mL), and dried (MgSO4). Finally, the solvent was removed
under reduced pressure. The crude product was purified by flash
chromatography (EtOAc/petroleum ether 50:50). The purified prod-
uct was dissolved in the minimum amount of hot diethyl ether, and
hexane was added until the solution became turbid. The solution was
then gently warmed to give a clear solution, which was allowed to cool
to room temperature and then kept at À158C overnight to give the
product sulfoxide as needles. The crystalline solid was then filtered
and washed with cooled (À158C) hexane to (R)-4b (7.60 g, 82%),
ee > 99.5% (determined by HPLC on a Daicel Chiralpak AS column,
with 15% isopropanol in heptane, and a flow rate of 1.0 mLminÀ1),
[a]D20 = 151 (c = 1.0, acetone); [(Lit.[39] (R)-4b; ee 95%); [a]2D0 = 142
(c = 1.5, acetone)].
[29] A. Korte, J. Legros, C. Bolm, Synlett 2004, 2397 – 2399.
[30] J. Legros, C. Bolm, Angew. Chem. 2004, 116, 4321 – 4324; Angew.
Chem. Int. Ed. 2004, 43, 4225 – 4228.
[31] J. Legros, C. Bolm, Chem. Eur. J. 2005, 11, 1086 – 1092.
[32] All stereoselectivity factors were calculated using the equation
developed by Kagan and Fiaud.[40]
[33] N. Komatsu, M. Hashizume, T. Sugita, S. Uemura, J. Org. Chem.
1993, 58, 7624 – 7626.
[34] V. V. Thakur, A. Sudalai, Tetrahedron: Asymmetry 2003, 14,
407 – 410.
Received: August 26, 2005
Published online: October 17, 2005
[35] N. Komatsu, M. Hashizume, T. Sugita, S. Uemura, J. Org. Chem.
1993, 58, 4529 – 4533.
[36] A. Massa, F. R. Siniscalchi, V. Bugatti, A. Lattanzi, A. Scettri,
Tetrahedron: Asymmetry 2002, 13, 1277 – 1283.
[37] X. Jia, X. Li, L. Xu, Y. Li, Q. Shi, T. Au-Yeung, C. Yip, X. Yao, A.
Chan, Adv. Synth. Catal. 2004, 346, 723 – 726.
Keywords: asymmetric catalysis · kinetic resolution · oxidation ·
sulfoxides · vanadium
.
[1] I. Fernµndez, N. Khiar, Chem. Rev. 2003, 103, 3651 – 3705.
[2] M. C. Carreæo, Chem. Rev. 1995, 95, 1717 – 1760.
[3] J. Legros, J. R. Dehli, C. Bolm, Adv. Synth. Catal. 2005, 347, 19 –
31.
[4] F. A. Davis, R. T. Reddy, W. Han, P. J. Carroll, J. Am. Chem. Soc.
1992, 114, 1428 – 1437.
[38] Chloroform had been used by Ellman and co-workers in the
oxidation of di-tert-butyl disulfide,[22] and by Zhu and co-
workers[26] in oxidations of alkyl aryl sulfides catalyzed by
vanadium–salan complexes.
[39] A. Lattanzi, F. Bonadies, A. Senatore, A. Soriente, A. Scettri,
Tetrahedron: Asymmetry 1997, 8, 2473 – 2478.
[5] W. Adam, M. N. Korb, K. J. Roschmann, C. R. Saha-Möller, J.
Org. Chem. 1998, 63, 3423 – 3428.
[40] H. B. Kagan, J. C. Fiaud, Top. Stereochem. 1988, 18, 249.
Angew. Chem. Int. Ed. 2005, 44, 7221 –7223
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7223