148
H.A. Dabbagh, M. Zamani / Applied Catalysis A: General 404 (2011) 141–148
of t-ZrO2 with aluminum atoms generates a catalyst with specific
activity and selectivity.
References
[1] J.S. Valente, X. Bokhimi, F. Hernandez, Langmuir 19 (2003) 3583–3588.
[2] D. Susnik, J. Holc, M. Hrovat, S. Zupancic, J. Mater. Sci. Lett. 16 (1997) 1118–1120.
[3] Q.H. Zhang, Y.Q. Feng, S.L. Da, Anal. Sci. 15 (1999) 767–772.
[4] M. Sugiura, Catal. Surv. Asia 7 (2003) 77–87.
4. Conclusions
[5] M.Y. He, J.G. Ekerdt, J. Catal. 87 (1984) 238–254.
[6] M.D. Rhodes, K.A. Pokrovski, A.T. Bell, J. Catal. 233 (2005) 210–220.
[7] M. Yoshimura, Ceram. Bull. 67 (1988) 1950–1955.
[8] E.V. Stefanovich, A.L. Shluger, C.R.A. Catlow, Phys. Rev.
11560–11571.
[9] G. Stapper, M. Bernasconi, N. Nicoloso, M. Parrinello, Phys. Rev. B 59 (1999)
797–810.
[10] J.H. Bitter, K. Seshan, J.A. Lercher, J. Catal. 183 (1999) 336–343.
[11] H.G. Scott, J. Mater. Sci. 10 (1975) 1527–1535.
[12] R.T. Yang, Adsorbents: Fundamentals and Applications, John Wiley & Sons Inc.,
2003, pp. 146–150.
[13] D. Sarkar, D. Mohapatra, S. Ray, S. Bhattacharyya, S. Adak, N. Mitra, Ceram. Int.
33 (2007) 1275–1282.
[14] M. Zawadzki, D. Hreniak, J. Wrzyszcz, W. Mista, H. Grabowska, O.L. Malta, W.
Strezka, Chem. Phys. 291 (2003) 275–285.
[15] M. Kagawa, M. Kikuchi, Y. Syono, T. Nagae, J. Am. Ceram. Soc. 66 (1983) 751–754.
[16] G. Kalonji, J. McKittrick, L.W. Hobbs, in: N. Claussen, M. Ruhle, A.H. Heuer
(Eds.), Advances in Ceramics, vol. 12, American Ceramic Society, USA, 1984,
pp. 816–825.
[17] V. Jayaram, T. Whitney, C.G. Levi, R. Mehrabian, Mater. Sci. Eng. A 124 (1990)
65–81.
[18] J. McKittrick, G. Kalonji, T. Ando, J. Non-Cryst. Sol. 94 (1987) 163–171.
[19] S. Soisuwan, J. Panpranot, D.L. Trimm, P. Praserthdam, Appl. Catal. A: Gen. 303
(2006) 268–272.
[20] J.K. Han, F. Saito, B.T. Lee, Mater. Lett. 58 (2004) 2181–2185.
[21] B.T. Lee, J.K. Han, F. Saito, Mater. Lett. 59 (2005) 355–360.
[22] A. Beitollahi, H. Hosseini-Bay, H. Sarpoolaki, J. Mater. Sci. Mater. Electron. 21
(2010) 130–136.
[23] H.A. Dabbagh, J. Mohammad Salehi, J. Org. Chem. 63 (1998) 7619–7627.
[24] H.A. Dabbagh, M.S. Yalfani, B.H. Davis, J. Mol. Catal. A: Chem. 238 (2005) 72–77.
[25] H.A. Dabbagh, K. Taban, M. Zamani, J. Mol. Catal. A: Chem. 326 (2010) 55–68.
[26] P. Souza Santos, H. Souza Santos, S.P. Toledo, Mater. Res. 3 (2000) 104–114.
[27] K. Jiratova, L. Beranek, Appl. Catal. 2 (1982) 125–138.
[28] H.J.M. Bosman, E.C. Kruissink, J. von der Spoel, F. von den Brink, J. Catal. 148
(1994) 660–672.
[29] M.M. Amini, M. Mirzaee, J. Sol-Gel. Sci. Technol. 36 (2005) 19–23.
[30] L. Le Bihan, F. Dumeignil, E. Payen, J. Grimblot, J. Sol-Gel. Sci. Technol. 24 (2002)
113–120.
[31] D. Sarkar, D. Mohapatra, S. Ray, S. Bhattacharyya, S. Adak, N. Mitra, J. Mater. Sci.
42 (2007) 1847–1855.
[32] S. Roy, J. Sol-Gel. Sci. Technol. 44 (2007) 227–233.
[33] M. Araki, K. Takahashi, T. Hibi, Sumitomo Chemical Co., Eur. Pat. Appl. (1985)
0150832.
Mixed Al2O3–ZrO2 composite with different compositions were
prepared by sol–gel method and characterized by XRD, SEM, TGA
and FT-IR. Chemically mixed oxide composites calcined at 600 ◦C
are amorphous with no distinct XRD pattern. At 1000 ◦C the amor-
phous phase of mixed oxide was transformed to a crystalline
phase which consists of t-ZrO2 and trace of ␣-Al2O3. This feature
was observed by TGA and XRD pattern of Al50Zr50. Mechanically
mixed Al50Zr50 composite have XRD pattern similar to those of
pure ␥-alumina and t, m-zirconia. The specific BET surface area for
the Al50Zr50 after calcination at 600 and 1000 ◦C was 104.2 and
0.3 m2/g, respectively. The NH3-TPD data complements the BET
finding.
Evaluation of catalytic activity and selectivity for dehydration
of mixture of 2-octanol and DPP was investigated. Reactivity of
2-octanol was decreased by increasing the zirconium content.
This trend was not observed for DPP dehydration. Selectivity for
the formation of 1-octene and cis-2-octene was increased for
Al25Zr75 composite. Octenes isomerization and dehydrogenation
was observed only for the Al50Zr50 composite and pure zirconia.
Minimum ether was formed for the reaction of 2-octanol over
Al75Zr25 composite. The formation of 1-alkene was increased at
the expense of Z-2-alkene for the dehydration of DPP over Al25Zr75
composite.
B 49 (1994)
The amorphous and crystalline Al50Zr50 catalysts showed mod-
erate and very low reactivity for the conversion of 2-octanol
respectively, and high conversion for DPP. The crystalline form
selectively dehydrated the tertiary alcohol (DPP) in the pres-
ence of secondary alcohol (2-octanol) producing E-alkene. The
amorphous mixed oxide produced the least stable kinetically
controlled 1-alkene. This feature of new crystalline Al2O3-ZrO2
(50 wt.%) composite has not been reported elsewhere up to this
date.
[34] M. Araki, T. Hibi, Sumitomo Chemical Co., Eur. Pat. Appl. (1986) 0222356.
[35] I. Ferino, M.F. Casula, A. Corrias, M.G. Cutrufello, R. Monaci, G. Paschina, Phys.
Chem. Chem. Phys. 2 (2000) 1847–1854.
Acknowledgements
[36] K. Tanabe, T. Yamaguchi, Catal. Today 20 (1994) 185–198.
[37] S. Chokkaram, B.H. Davis, J. Mol. Catal. A: Chem. 118 (1997) 89–99.
[38] I. Ferino, A. Auroux, P. Artizzu, J. Chem. Soc. Faraday Trans. 91 (1995)
3263–3267.
[39] B. Shi, H.A. Dabbagh, B.H. Davis, J. Mol. Catal. A: Chem. 141 (1999) 257–262.
[40] H.A. Dabbagh, C.G. Hughes, B.H. Davis, J. Catal. 133 (1992) 445–460.
[41] H. Knozinger, H. Buhl, K. Kochloefl, J. Catal. 24 (1972) 57–68.
[42] V. Macho, M. Kralik, E. Jurecekova, J. Hudec, L. Jurecek, Appl. Catal. A: Gen. 214
(2001) 251–257.
We would like to thank Isfahan University of Technol-
ogy (IUT) research council for the financial support (Grant
# 87/500/9143). We also thank Dr. K. Ghani for his helpful
assistant.
Appendix A. Supplementary data
[43] H.A. Dabbagh, M. Zamani, B.H. Davis, J. Mol. Catal. A: Chem. 333 (2010) 54–68.
[44] M.L.G. Franco, S.R. Andrade, R.G. Alamilla, G.S. Robles, J.M.D. Esquivel, Catal.
Today 65 (2001) 137–141.
Supplementary data associated with this article can be found, in