ChemComm
Communication
Table 2 Substrate scope of reduction of aromatic nitro compounds using
G3-C16–Rh5(CO)15
2 (a) S. Mignani, S. E. Kazzouli, M. Bousmina and J.-P. Majoral, Adv.
Drug Delivery Rev., 2013, 65, 1316; (b) Y. Tsai, C.-C. Hu, C.-C. Chu
and T. Imae, Biomacromolecules, 2011, 12, 4283.
a
3 (a) V. S. Myers, M. G. Weir, E. V. Carino, D. F. Yancey, S. Pande and
R. M. Crooks, Chem. Sci., 2011, 2, 1632; (b) A. Siani, O. S. Alexeev,
D. S. Deutsch, J. R. Monnier, P. T. Fanson, H. Hirata, S. Matsumoto,
C. T. Williams and M. D. Amiridis, J. Catal., 2009, 266, 331;
(c) K. Yamamoto and K. Takanashi, Polymer, 2008, 49, 4033;
(d) B. I. Lemon and R. M. Crooks, J. Am. Chem. Soc., 2000,
122, 12886.
4 (a) A. Ouali and A.-M. Caminade, in Dendrimers: towards catalytic,
material and biomedical uses, ed. A.-M. Caminade, C.-O. Turrin,
R. Laurent, A. Ouali and B. Delavaux-Nicot, John Wiley & Sons,
Chichester, 2011, ch. 4, pp. 183–195; (b) K. Kirkorian, A. Ellis and
L. J. Twyman, Chem. Soc. Rev., 2012, 41, 6138; (c) D. Wang and
D. Astruc, Coord. Chem. Rev., 2013, 257, 2317.
Entry
Substrate
Time [h]
Conv.b [%]
Yieldb [%]
1
2
2-CHO
4
6
10
10
8
6
4
4
16
6
499
499
499
499
98
499
499
499
499
499
98
99
99
99
99
98
99
99
99
99
99
98
2-COCH3
2-COOCH3
2-CONH2
2-SO2NH2
2-CH3
4-Cl
4-Br
4-CN
3-OCH3
3-CHQCH2
3
4c
5c
6
7
8
9
5 (a) T. Mizugaki, Y. Miyauchi, M. Murata, K. Ebitani and K. Kaneda,
Chem. Lett., 2005, 34, 286; (b) M. Ooe, M. Murata, T. Mizugaki,
K. Ebitani and K. Kaneda, J. Am. Chem. Soc., 2004, 126, 1604;
(c) M. Ooe, M. Murata, T. Mizugaki, K. Ebitani and K. Kaneda, Nano
Lett., 2002, 2, 999; (d) Z. Maeno, M. Okao, T. Mitsudome,
T. Mizugaki, K. ꢀJitsukawa and K. Kaneda, RSC Adv., 2013, 3, 9662.
10
11c
24
a
Reaction conditions: Rh6(CO)16 (10 mmol), G3-C16 (12 mmol), substrate
b
(1.0 mmol), toluene (2 mL), H2O (0.72 mL), 80 1C, CO (10 atm). Deter-
mined by GC using internal standard technique. Substrate (0.5 mmol).
c
6 The [Rh5(CO)15
] clusters were prepared through multi-step synth-
eses. See: (a) A. Fumagalli, T. F. Koetzle, F. Takusagawa, P. Chini,
S. Martinengo and B. T. Heaton, J. Am. Chem. Soc., 1980, 102, 1740;
(b) S. Kawi and B. C. Gates, Inorg. Chem., 1994, 33, 503.
7 (a) G. W. Kabalka and R. S. Verma, in: Comprehensive Organic
Synthesis, ed. B. M. Trost and I. Fleming, Oxford, Pergamon,
´
1st edn, 1992, vol. 8, p. 363; (b) M. Stratakis and H. Garcıa, Chem.
Rev., 2012, 112, 4469; (c) H.-U. Blaser, H. Steiner and M. Studer,
ChemCatChem, 2009, 1, 210.
8 Although studies of dendrimer-bound metal carbonyl clusters have
been reported,9,10 this is the first example of the synthesis of a metal
carbonyl cluster within the internal nanovoid of a dendrimer.
9 For metal carbonyl clusters incorporated into dendrimer frameworks,
see: (a) A. Albinati, P. Leoni, L. Marchetti and S. Rizzato, Angew.
Chem., Int. Ed., 2003, 42, 5990; (b) B. J. Lear and C. P. Kubiak, Inorg.
Chem., 2006, 45, 7041; (c) L. Viau, A. C. Willis and M. G. Humphrey,
J. Organomet. Chem., 2007, 692, 2086.
10 For metal carbonyl clusters highly dispersed in dendrimers, see:
(a) J. Geng, H. Li, W. T. S. Huck and B. F. G. Johnson, Chem.
Commun., 2004, 2122; (b) E. C. Constable, D. Gusmeroli,
C. E. Housecroft, M. Neuburger and S. Schaffner, Polyhedron,
2006, 25, 421; (c) J. R. Aranzaes, C. Belin and D. Astruc, Angew.
Chem., Int. Ed., 2006, 45, 132; (d) A. Nievas, M. Medel, E. Hernandez,
E. Delgado, A. Martin, C. M. Casado and B. Alonso, Organometallics,
2010, 29, 4291.
11 S. Stevelmans, J. C. M. van Hest, J. F. G. A. Jansen, D. A. F. J. van
Boxtel, E. M. M. de Brabander-van den Berg and E. W. Meijer, J. Am.
Chem. Soc., 1996, 118, 7398.
12 Details of IR spectral measurements are in the ESI†.
13 Rh6(CO)16 disproportionates in pyridine (py) solvent into [Rh5(CO)13(py)2]ꢀ
and cis-[Rh(CO)2(py)2]+. The resulting cis-[Rh(CO)2(py)2]+ is reduced
by CO/H2O into [(py)2H][Rh5(CO)13(py)2]. See: G. Fachinetti and
T. Funaioli, J. Organomet. Chem., 1993, 460, C34.
Scheme 1 Gram-scale reactions of G3-C16–Rh5(CO)15-catalyzed chemo-
selective reduction of 1 and 20-nitroacetophenone.
within G3-C16 through ionic interactions between the [Rh5(CO)15]ꢀ
cluster anion and the quaternary ammonium cation of the
branch units.
In conclusion, the selective synthesis of a [Rh5(CO)15]ꢀ cluster
within a PPI dendrimer was accomplished and this dendrimer-
encapsulated [Rh5(CO)15]ꢀ promoted highly chemoselective
reduction of nitro aromatics. The G3-C16 PPI dendrimer not only
acted as an efficient nanoreactor for the selective synthesis of the
[Rh5(CO)15]ꢀ cluster in one step, but also transformed into a catalytic
nanoreactor by encapsulation of the [Rh5(CO)15]ꢀ cluster within the
nanovoid. The G3-C16-encapsulated [Rh5(CO)15]ꢀ promoted chemo-
selective reduction of aromatic nitro groups containing reducible
functional groups. The G3-C16 can function as a basic nanoreactor
for direct transformation of Rh6(CO)16 to [Rh5(CO)15]ꢀ, a cation
stabilizer for the [Rh5(CO)15]ꢀ anion generated, and a macroligand
that suppresses decomposition of the [Rh5(CO)15]ꢀ carbonyl cluster
during catalytic reactions.
14 J. B. Stothers, in Carbon-13 NMR Spectroscopy, Organic Chemistry,
ed. A. L. Blomquist and H. Wasserman, Academic Press, London,
1972, ch. 5, vol. 24, p. 153.
15 Dynamic light scattering (DLS) measurements revealed that G3-C16
–
Rh5(CO)15 was a unimolecular micelle with an average diameter of
6.2 ꢁ 1.2 nm, which is similar to the diameter of the original G3-C16
in toluene (6.0 ꢁ 0.9 nm). In contrast, the diameter of the vesicle
consisting of G3-C16 was 33–200 nm. See: A. P. H. J. Schenning,
´
C. Elissen-Roman, J.-W. Weener, M. W. P. L. Baars, S. J. van der
Gaast and E. W. Meijer, J. Am. Chem. Soc., 1998, 120, 8199.
This study was supported by JSPS KAKENHI (25630368 and
24246129).
16 The internal nanovoids of G3-C5 and G3-NMe2 are less confined
compared to G3-C16, in which [Rh5(CO)15
resulting in the aggregation into higher nuclearity Rh clusters such
]
ꢀ might not be stabilized,
2ꢀ
3ꢀ
as [Rh12(CO)30
]
and [Rh13H2(CO)24] .
17 Only two catalytic systems have been reported for the quantitative
chemoselective reduction of 1 to 2 (495% yield). See: (a) S. Fu¨ldner,
P. Pohla, H. Bartling, S. Dankesreiter, R. Stadler, M. Gruber, A. Pfitzner
References
1 Designing Dendrimers, ed. S. Campagna, P. Ceroni and F. Puntoriero,
¨
and B. Konig, Green Chem., 2011, 13, 640; (b) F. A. Westerhaus,
John Wiley & Sons, Hoboken, New Jersey, 2012.
¨
R. V. Jagadeesh, G. Wienhofer, M.-M. Pohl, J. Radnik, A.-E. Surkus,
6528 | Chem. Commun., 2014, 50, 6526--6529
This journal is ©The Royal Society of Chemistry 2014