Please do not adjust margins
ChemComm
Page 3 of 4
DOI: 10.1039/C6CC05705E
Journal Name
COMMUNICATION
Notes and references
The tuning can be expanded to other combinations of short-
chained precursors as well. We found that for reactions using
dry Cd(OPr)2 (see ESI for TGA data), the addition of small
amounts of cadmium formate (Cd(OOCH)2) yielded a similar AR
control (ESI Table S7). This suggests that OOCH- ions afford an
alternative to the AR-tuning via OH- ions. We achieved NPLs
varying from an aspect ratio of 6.5:1 with dry Cd(OPr)2, to
3.8:1 when the fraction of Cd(OOCH)2 was increased to 15
mol%. However, when using amounts of Cd(OOCH)2 superior
(1)
(2)
(3)
(4)
(5)
Park, J.; Joo, J.; Soon, G. K.; Jang, Y.; Hyeon, T. Angew.
Chem. Int. Ed. 2007, pp 4630–4660.
Wolcott, A.; Fitzmorris, R. C.; Muzaffery, O.; Zhang, J. Z.
Chem. Mater. 2010, 22 (9), 2814–2821.
Ithurria, S.; Dubertret, B. J. Am. Chem. Soc. 2008, 130 (49),
16504–16505.
Ithurria, S.; Talapin, D. V. J. Am. Chem. Soc. 2012, 134 (45),
18585–18590.
Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.;
Dubertret, B.; Efros, A. L. Nat. Mater. 2011, 10 (12), 936–
941.
to 20 mol% we observed
a 3D growth of spherical
nanocrystals, hence, we were not able to reach square NPLs
with Cd(OOCH)2.
(6)
Achtstein, A. W.; Schliwa, A.; Prudnikau, A.; Hardzei, M.;
Artemyev, M. V; Thomsen, C.; Woggon, U. Nano Lett. 2012,
12, 3151–3157.
As the AR increases, typically the NPL width is reduced.
Consequently, the optical properties, more specifically the
specifically the band-edge absorption and fluorescence can be
precisely tuned by controlling the AR. To measure the optical
properties, a diluted NPL suspension in hexane was added to a
3 mL quartz cuvette. Absorbance spectra were collected with a
Cary 300 scan Varian spectrometer. Fluorescence spectra were
recorded using an Edinburgh instruments FLS920
spectrofluorimeter. We observed that the absorption and
emission maximum are progressively blue shifted with
decreasing width (Figure 3, ESI Table S10). Using an 8-minute
reaction time, the absorption (fluorescence) maximum could
be varied from 512.8 nm (514.7 nm) for 15.2 nm wide NPLs, to
508.4 nm (510.4 nm) when the width was reduced to 5.1 nm.
Since dry Cd(OAc)2 yielded the narrowest NPLs, a further
reduction could be obtained by reducing the reaction time (ESI
Table S8), blue shifting the band-edge optical properties
further to an absorption (emission) maximum of 498.1 nm
(502.4 nm). With a final width of the smallest sample of only
2.4 nm, the synthesis thus allows tuning the particle properties
continuously from the weak into the strong lateral
confinement regime. These NPLs should therefore also be
highly suitable for further studies on the role of quantum
confinement in colloidal (quasi-)2D nanostructures.
(7)
(8)
Naeem, A.; Masia, F.; Christodoulou, S.; Moreels, I.; Borri,
P.; Langbein, W. Phys. Rev. B 2015, 91 (12), 121302(R).1–5.
Achtstein, A. W.; Antanovich, A.; Prudnikau, A.; Scott, R.;
Woggon, U.; Artemyev, M. J. Phys. Chem. C 2015, 119 (34),
20156–20161.
(9)
Scott, R.; Achtstein, A. W.; Prudnikau, A.; Antanovich, A.;
Christodoulou, S.; Moreels, I.; Artemyev, M.; Woggon, U.
Nano Lett. 2015, 15 (8), 4985–4992.
(10)
(11)
Kunneman, L. T.; Tessier, M. D.; Heuclin, H.; Dubertret, B.;
Aulin, Y. V.; Grozema, F. C.; Schins, J. M.; Siebbeles, L. D. A.
J. Phys. Chem. Lett. 2013, 4 (21), 3574–3578.
Achtstein, A. W.; Scott, R.; Kickhöfel, S.; Jagsch, S. T.;
Christodoulou, S.; Bertrand, G. H. V.; Prudnikau, A. V.;
Antanovich, A.; Artemyev, M.; Moreels, I.; Schliwa, A.;
Woggon, U. Phys. Rev. Lett. 2016, 116 (11), 116802.
Guzelturk, B.; Olutas, M.; Delikanli, S.; Kelestemur, Y.;
Erdem, O.; Demir, H. V. Nanoscale 2015, 7 (6), 2545–2551.
Rowland, C. E.; Fedin, I.; Zhang, H.; Gray, S. K.; Govorov, A.
O.; Talapin, D. V; Schaller, R. D. Nat. Mater. 2015, 14
(March), 1–6.
(12)
(13)
(14)
Jana, S.; Phan, T. N. T.; Bouet, C.; Tessier, M. D.; Davidson,
P.; Dubertret, B.; Ab??cassis, B. Langmuir 2015, 31 (38),
10532–10539.
(15)
(16)
(17)
Lhuillier, E.; Hease, P.; Ithurria, S.; Dubertret, B. Chem.
Mater. 2014, 26 (15), 4514–4520.
In conclusion, we described a synthesis protocol that allows
tuning of the aspect ratio of zinc blende CdSe NPLs, via a
precise control of the ratio of dry and hydrated cadmium
acetate. We demonstrated how to gain access to a family of
CdSe NPLs of different rectangular shape with areas between
15 and 500 nm2 and AR between 1:1 and 7.7:1. The role of the
OH- moiety was crucial in the growth of shape-controlled NPLs,
as a competitive 2D growth agent next to Cd(OAc)2. Through
the NPL shape and overall area, a targeted tuning of the
absorption and emission properties is now possible.
Abécassis, B.; Tessier, M. D.; Davidson, P.; Dubertret, B.
Nano Lett. 2014, 14 (2), 710–715.
Pedetti, S.; Ithurria, S.; Heuclin, H.; Patriarche, G.;
Dubertret, B. J. Am. Chem. Soc. 2014, 136 (46), 16430–
16438.
(18)
Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.;
Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404 (6773),
59–61.
(19)
(20)
Wang, F.; Tang, R.; Buhro, W. E. Nano Lett. 2008, 8 (10),
3521–3524.
Kim, M. R.; Miszta, K.; Povia, M.; Brescia, R.; Christodoulou,
S.; Prato, M.; Marras, S.; Manna, L.; Al, K. I. M. E. T. ACS
Nano 2012, No. 12, 11088–11096.
Acknowledgments
The present publication is realized with the support of the
Ministero degli Affari Esteri
e
della Cooperazione
(21)
Houtepen, A. J.; Koole, R.; Vanmaekelbergh, D.; Meeldijk,
J.; Hickey, S. G. J. Am. Chem. Soc. 2006, 128 (21), 6792–
6793.
Internazionale (IONX-NC4SOL). The authors thank G. Pugliese
for measuring the TGA data.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins