10.1002/anie.201708278
Angewandte Chemie International Edition
1387–1399; (d) S. Carley, M. A. Brimble, Org. Lett. 2009, 11, 563–
566; (e) D. Bondar, J. Liu, T. Müller, L. A. Paquette, Org. Lett. 2005,
7, 1813–1816; (f) P. D. O’Connor, C. K. Knight, D. Friedrich, X.
Peng, L. A. Paquette, J. Org. Chem. 2007, 72, 1747–1754; (g) S. D.
Lotesta, Y. Hou, L. J. Williams, Org. Lett. 2007, 9, 869–872; (h) S.
Joyasawal, S. D. Lotesta, N. G. Akhmedov, L. J. Williams, Org. Lett.
2010, 12, 988–991; (i) D. Vellucci, S. D. Rychnovsky, Org. Lett.
2007, 9, 711–714; (j) J. A. Aho, E. Salomäki, K. Rissanen, P. M.
Pihko, Org. Lett. 2008, 10, 4183–4186; (k) H. Helmboldt, J. A. Aho,
P. M. Pihko, Org. Lett. 2008, 10, 4179–4182; (l) J. A. Aho, A. Piisola,
K. S. Krishnan, P. M. Pihko, Eur. J. Org. Chem. 2011, 12, 1682–
1694; for a review see (m) R. Halim, M. A. Brimble, Org. Biomol.
Chem. 2006, 4, 4048–4058; (n) A. Kouridaki, M. Sofiadis, T.
Montagnon, Eur. J. Org. Chem. 2015, 7240–7243.
Information (CIF); Crystallographic data have been deposited with the
Cambridge Crystallographic Data Centre (CCDC 1551234) and can be
[14] F. Gao, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 10961-10963.
[15] See, E. Negishi, Q. Hu, Z. Huang, M. Qian, G. Wang, Aldrichimica
Acta, 2005, 38, 71-87.
[16] T. J. Donohoe, K. M. P. Wheelhouse, P. J. Lindsay-Scott, P. A.
Glossop, I. A. Nash, J. S. Parker, Angew. Chem. 2008, 120, 2914-
2917; Angew. Chem. Int. Ed. 2008, 47, 2872-2875.
[17] We have assumed that the stereochemistry at C36 (hemiacetal) is
formed as the thermodynamically more stable stereoisomer with an
axial C-36 hydroxyl group; this assumption is based on the behaviour
of related systems as reported in the two previous synthesis of the
pectenotoxins.[4,5]
[4] (a) D. A. Evans, H. A. Rajapakse, D. Stenkamp, Angew. Chem. 2002,
114, 4751-4755; Angew. Chem. Int. Ed. 2002, 41, 4569–4573; (b) D.
A. Evans, H. A. Rajapakse, A. Chiu, D. Stenkamp, Angew. Chem.
2002, 114, 4755-4758; Angew. Chem. Int. Ed. 2002, 41, 4573–4576.
[5] K. Fujiwara, Y. Suzuki, N. Koseki, Y. I. Aki, Y. Kikuchi, S. I.
Murata, F. Yamamoto, M. Kawamura, T. Norikura, H. Matsue, A.
Murai, R. Katoono, H. Kawai, T. Suzuki, Angew. Chem. 2014, 126,
799-803; Angew. Chem. Int. Ed. 2014, 53, 780–784.
[6] Representative examples: (a) M. de Champdore, M. Lasalvia, V.
Piccialli, Tetrahedron Lett. 1998, 39, 9781; (b) T. J. Donohoe, S.
Butterworth, Angew. Chem. 2003, 115, 978; Angew. Chem. Int. Ed.
Engl. 2003, 42, 948; (c) D. M. Walba, G. S. Stoudt, Tetrahedron Lett.
1982, 23, 727-730; (d) T. J. Donohoe, S. Butterworth, Angew. Chem.
2005, 117, 4844-4846; Angew. Chem. Int. Ed. 2005, 44, 4766-4768;
(f) T. J. Donohoe, P. C. M. Winship, D. S. Walter, J. Org. Chem.
2009, 74, 6394-6397; (g) H. Cheng, C. B. W. Stark, Angew. Chem.
2010, 122, 1632-1635; Angew. Chem. Int. Ed. 2010, 49, 1587–1590;
(h) H. Sugimoto, T. Kanetake, K. Maeda, S. Itoh, Org. Lett. 2016, 18,
1246–1249. For reviews: (i) T. J. Donohoe, B. S. Pilgrim, J. Org.
Chem. 2013, 78, 2149-2167; (j) N. S. Sheikh, Org. Biomol. Chem.
2014, 12, 9492–9504; (k) J. Adrian, L. J. Gross, C. B. W. Stark,
Beilstein J. Org. Chem. 2016, 12, 2104–2123.
[7] T. J. Donohoe, R. M. Lipiński, Angew. Chem. 2013, 125, 2551-2554;
Angew. Chem. Int. Ed. 2013, 52, 2491–2494.
[8] (a) T. Mukaiyama, S. Isayama, S. Inoki, K. Kato, T. Yamada, T.
Takai, Chem. Lett. 1989, 18, 449-452; (b) S. Inoki, K. Kayo, T. Takai,
S. Isayama, T. Yamada, T. Mukaiyama, Chem. Lett. 1989, 18, 515-
518; (c) S. Inoki, T. Mukaiyama, Chem. Lett. 1990, 19, 67-70; (d) K.
Kato, T. Yamada, T. Takai, S. Inoki, S. Isayama, Bull. Chem. Soc.
Jpn. 1990, 63, 179-186; (e) B. Perez, D. Schuch, J. Hartung, Org.
Biomol. Chem. 2008, 6, 3532-3541; (f) C. Palmer, N. Morra, A.
Stevens, B. Bajtos, B. Machin, B. Pagenkopf, Org. Lett. 2009, 11,
5614-5617; (g) G. A. Phillips, C. Palmer, A. C. Stevens, M. L.
Piotrowski, D. S. R. Dekruyf, Tetrahedron Lett. 2015, 56, 6052–6055.
[9] F. Theif, H. Schick, G. Winterb, G. Reck, Tetrahedron 1991, 47,
7569-7582.
[10] M. Lautens, T. A. Stammers, Synthesis 2002, 1993.
[11] See: A. H. Hoveyda, D. G. Gillingham, J. J. Van Veldhuizen, O.
Kataoka, S. B. Garber, J. S. Kingsbury, J. P. A. Harrity, Org. Biomol.
Chem. 2004, 2, 8-23.
[12] See: H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev.
1994, 94, 2483-2547.
[13] Low temperature single crystal X-ray diffraction data were collected
using a (Rigaku) Oxford Diffraction SuperNova A diffractometer and
the structure was solved by charge-flipping using 'Superflip’ [L.
Palatinus, G. Chapuis, J. Appl. Cryst. 2007, 40, 786]. The structure
was refined by full-matrix least squares on F2 using CRYSTALS suite
[P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J.
Watkin, J. Appl. Cryst. 2003, 36, 1487; Parois, P, R. I. Cooper, A. L.
Thompson, Chemistry Central Journal 2015, 9:30; R. I. Cooper, A. L.
Thompson, D. J. Watkin, J. Appl. Cryst. 2010, 43, 1100-1107]. The
Flack x parameter [H. D. Flack, Acta Cryst. 1983, A39, 876-881; H.
D. Flack, G. Bernardinelli, J. Appl. Cryst. 2000, 33, 1143-1148]
refined to 0.00(2). Bayesian analysis of the Bijvoet pairs [R. W. W.
Hooft, L. H. Straver, A. L. Spek, J. Appl. Cryst. 2008, 41, 96-103]
gave the Hooft y parameter as 0.022(14), and the probability that the
structure was the correct hand of >99.99% given that the crystal is
enantiopure. Full refinement details are given in the Supporting
4
This article is protected by copyright. All rights reserved.