Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 4
COMMUNICATION
Journal Name
2, 6666-6670; (c) X. Bai, G. Zeng, T. Shao and Z. Jiang, Angew.
Chem. Int. Ed., 2017, 56, 3684-3688; (d) V. Laina-Martín, J.
Humbrías-Martín, J. A. Fernández-Salas and J. Alemán, Chem.
Commun., 2018, 54, 2781-2784.
For allylstannanes as nucleophiles, see: (a) N. V. Hanhan, A. H.
Sahin, T. W. Chang, J. C. Fettinger and A. K. Franz, Angew.
Chem. Int. Ed., 2010, 49, 744-747; (b) Y. Murata, M. Takahashi,
F. Yagishita, M. Sakamoto, T. Sengoku and H. Yoda, Org. Lett.,
could be obtained by treating 3kp with NaH and acrylyl chloride.
Following olefin metathesis cyclization catalyzed by Grubbs
second catalyst provided compound 9, which has a valuable
chiral spirocyclic oxindole skeleton (Scheme 2d). Finally, 3kp
could also be converted into fluorinated spirooxindole pyrans
5
DOI: 10.1039/C9CC07944K
9
1
0 through a spiro-Prins fluorination reaction with PhCHO
catalyzed by BF ·OEt (Scheme 2d).
3
2
In summary, we have developed a highly efficient and
enantioselective asymmetric allylation of isatins with
2
013, 15, 6182-6185; (c) T. Wang, X.-Q. Hao, J.-J. Huang, K.
Wang, J.-F. Gong and M.-P. Song, Organometallics, 2014, 33,
194-205; (d) M. Takahashi, Y. Murata, F. Yagishita, M.
Sakamoto, T. Sengoku and H. Yoda, Chem. -Eur. J., 2014, 20,
allylboronates catalyzed by a binary acid Bi(OAc)
3
/CPA system
under mild conditions. series of chiral 3-allyl-3-
A
1
1091-11100; (e) D. Ghosh, N. Gupta, S. H. R. Abdi, S. Nandi,
N. H. Khan, R. I. Kureshy and H. C. Bajaj, Eur. J. Org. Chem.,
015, 2801-2806; For allyl silanes as nucleophiles, see: (g) Z.-
hydroxyoxindoles were obtained in excellent yields with good
enantioselectivities. Low catalyst loading was also
demonstrated. The synthetic utility of this allylation strategy
has been demonstrated through the formal synthesis of ent-
CPC-1 and some valuable transformations of the allylation
products.
2
Y. Cao, Y. Zhang, C.-B. Ji and J. A. Zhou, Org. Lett., 2011, 13,
6398-6401; (h) N. V. Hanhan, Y. C. Tang, N. T. Tran and A. K.
Franz, Org. Lett., 2012, 14, 2218-2221; (i) Z.-Y. Cao, J.-S. Jiang
and J. Zhou, Org. Biomol. Chem., 2016, 14, 5500-5504.
0 For selected reviews describing stereoselective allyl addition
to carbonyl compounds, see: (a) J. W. J. Kennedy and D. G.
Hall, Angew. Chem. Int. Ed., 2003, 42, 4732-4739; (b) M. Yus,
J. C. González-Gómez and F. Foubelo, Chem. Rev., 2011, 111,
1
We are grateful to the NNSFC (Grant Nos. 21971120 and
2
1933008) for financial support.
7
774-7854; (c) H.-X. Huo, J. R. Duvall, M.-Y. Huang and R.
Conflicts of interest
There are no conflicts to declare.
Hong, Org. Chem. Front., 2014, 1, 303-320.
1
1
1 For a review describing application of allylboron reagents,
see: C. Diner and K. J. Szabó, J. Am. Chem. Soc., 2017, 139, 2-
1
4.
2 For selected examples of catalytic asymmetric addition of
allylboron reagents to ketones using metal complexes, see: (a)
R. Wada, K. Oisaki, M. Kanai and M. Shibasaki, J. Am. Chem.
Soc., 2004, 126, 8910-8911; (b) U. Schneider, M. Ueno and S.
Kobayashi, J. Am. Chem. Soc., 2008, 130, 13824-13825; (c) S.-
L. Shi, L.-W. Xu, K. Oisaki, M. Kanai and M. Shibasaki, J. Am.
Chem. Soc., 2010, 132, 6638-6639; (d) Y. Cui, Y. Yamashita and
S. Kobayashi, Chem. Commun., 2012, 48, 10319-10321.
Notes and references
1
(a) S. Peddibhotla, Curr. Bioact. Compd., 2009, 5, 20-38; (b) F.
Zhou, Y.-L. Liu and J. Zhou, Adv. Synth. Catal., 2010, 352, 1381-
1
9
5
407; (c) A. Kumar and S. S. Chimni, RSC Adv., 2012, 2, 9748-
762; (d) Z.-Y. Cao, F. Zhou and J. Zhou, Acc. Chem. Res., 2018,
1, 1443-1454.
2
(a) T. Nakamura, S. Shirokawa, S. Hosokawa, A. Nakazaki and
S. Kobayashi, Org. Lett., 2006, 8, 677-679; (b) T. Itoh, H.
Ishikawa and Y. Hayashi, Org. Lett., 2009, 11, 3854-3857; (c)
H. Wu, F. Xue, X. Xiao and Y. Qin, J. Am. Chem. Soc., 2010, 132,
1
1
1
3 For selected examples of catalytic asymmetric addition of
allylboron reagents to ketones using chiral binaphthols, see:
(
a) T. R. Wu, L. Shen and J. M. Chong, Org. Lett., 2004, 6, 2701-
2
704; (b) S. Lou, P. N. Moquist and S. E. Schaus, J. Am. Chem.
1
2
4052-14054; (d) G. Sirasani and R. B. Andrade, Org. Lett.,
011, 13, 4736-4737.
Soc., 2006, 128, 12660-12661; (c) D. S. Barnett, P. N. Moquist
and S. E. Schaus, Angew. Chem. Int. Ed., 2009, 48, 8679 -8682;
3
4
For kinetic resolutions of 3-allyl-3-hydroxyoxindoles, see: S.
(
d) R. S. Paton, J. M. Goodman and S. C. Pellegrinet, Org. Lett.,
Lu, S. B. Poh, W.-Y. Siau and Y. Zhao, Angew. Chem. Int. Ed.,
2
009, 11, 37-40; (e) R. Alam, T. Vollgraff, L. Eriksson, K. J.
2
013, 52, 1731-1734.
Szabó, J. Am. Chem. Soc., 2015, 137, 11262-11265; (f) S. O.
Simonetti and S. C. Pellegrinet, Eur. J. Org. Chem., 2019, 2956-
For catalytic asymmetric Witting [2, 3]-rearrangement of 3-
allyloxy)-2-oxindoles, see: (a) S. E. Denmark and L. R. Cullen,
(
2
970.
J. Org. Chem., 2015, 80, 11818-11848; (b) M. Oseka, M. Kimm,
S. Kaabel, I. Jarving, K. Rissanen and T. Kanger, Org. Lett.,
4 For selected examples of catalytic asymmetric addition of
allylboron reagents to ketones using aminophenol-valines,
see: (a) D. L. Silverio, S. Torker, T. Pilyugina, E. M. Vieira, M. L.
Snapper, F. Haeffner and A. H. Hoveyda, Nature, 2013, 494,
2
016, 18, 1358-1361.
5
6
For catalytic asymmetric hydroxylations of 3-allyloxindoles,
see: (a) D. Sano, K. Nagata and T. Itoh, Org. Lett., 2008, 10,
2
16-221; (b) K. A. Lee, D. L. Silverio, S. Torker, D. W. Robbins,
F. Haeffner, F. W. van der Mei and A. H. Hoveyda, Nat. Chem.,
016, 8, 768-777; (c) D. W. Robbins, K. A. Lee, D. L. Silverio, A.
Volkov, S. Torker and A. H. Hoveyda, Angew. Chem. Int. Ed.,
016, 55, 9610-9614; (d) F. W. van der Mei, C. Qin, R. J.
Morrison and A. H. Hoveyda, J. Am. Chem. Soc., 2017, 139,
053-9065.
5 (a) Z. Li, B. Plancq and T. Ollevier, Chem. -Eur. J., 2012, 18,
1
593-1595; (b) Y. Yang, F. Moinodeen, W. Chin, T. Ma, Z. Jiang
and C.-H. Tan, Org. Lett., 2012, 14, 4762-4765.
2
For asymmetric allylic alkylations to synthesize 3-allyl-3-
hydroxyoxindoles, see: (a) X.-C. Qiao, S.-F. Zhu and Q.-L. Zhou,
Tetrahedron: Asymmetry, 2009, 20, 1254-1261; (b) J. Itoh, S.
B. Han and M. J. Krische, Angew. Chem. Int. Ed., 2009, 48,
2
9
6
313-6316; (c) S. Jayakumar, N. Kumarswamyreddy, M.
Prakash and V. Kesavan, Org. Lett., 2015, 17, 1066-1069; (d)
R. He, S. Wu, H. Tang, X. Huo, Z. Sun and W. Zhang, Org. Lett.,
3
144-3147; (b)J. Wang, Q. Zhang, B. Zhou, C. Yang, X. Li and J.-
P. Cheng, iScience, 2019, 16, 511-523.
2
018, 20, 6183-6187.
1
1
6 Phenyl’s inflexibility make it difficult to form π-π interaction,
which may play a critical role in the stereo-control process.
7 M. Kitajima, I. Mori, K. Arai, N. Kogure and H. Takayama,
Tetrahedron Lett., 2006, 47, 3199-3202.
7
8
For catalytic asymmetric carbonyl-ene reactions of isatins,
see: K. Zheng, C. Yin, X. Liu, L. Lin and X. Feng, Angew. Chem.
Int. Ed., 2011, 50, 2573-2577.
For catalytic asymmetric vinylogous aldol reactions of isatins,
see: (a) C. Cassani and P. Melchiorre, Org. Lett., 2012, 14,
5
590-5593; (b) B. Zhu, W. Zhang, R. Lee, Z. Han, W. Yang, D.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins