Page 15 of 17
ACS Catalysis
(19) Zhang, F.; Liang, C.; Wu, X.; Li, H. Angew. Chem. Int. Ed. 2014,
53, 8498-8502.
Centre in Green Chemistry and Catalysis (CGCC) for financial
support. F.K. also acknowledge the University of Vienna (Aus-
tria) for additional support.
1
2
3
4
5
6
7
8
(20) Narasaka, K.; Soai, K.; Mukaiyama, T. Chem. Lett. 1974, 3, 1223-
1224.
(21) Kitanosono, T.; Ollevier, T.; Kobayashi, S. Chem. Asian J. 2013,
8, 3051-3062.
ASSOCIATED CONTENT
ꢄ Supporting Information
(22) Ollevier, T.; Plancq, B. Chem. Commun. 2012, 48, 2289-2291.
(23) Kobayashi, S.; Nagayama, S.; Busujima, T. Tetrahedron 1999, 55,
8739-8746.
Supporting Information including characterization of the
catalysts (low-angle and wide-angle XRD patterns of the
materials, SEM images as well as the EDX spectra, UV-vis
diffuse reflectance spectra of the catalysts, and Lewis acidity
studies) and experimental procedure for the catalytic tests
(effect of the SDS surfactant, Mukaiyama aldol reaction using
FeCl3 as catalyst, reusability tests and all the NMR spectra of
the products) are available free of charge on the ACS Publica-
(24) Kobayashi, S.; Manabe, K. Acc. Chem. Res. 2002, 35, 209-217.
9
(25) Horike, S.; Dinca, M.; Tamaki, K.; Long, J. R. J. Am. Chem. Soc.
2008, 130, 5854-5855.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(26) Zhang, F.; Wu, X.; Liang, C.; Li, X.; Wang, Z.; Li, H. Green Chem.
2014, 16, 3768-3777.
(27) Narasaka, K.; Soai, K.; Aikawa, Y.; Mukaiyama, T. Bull. Chem.
Soc. Jpn. 1976, 49, 779-783.
(28) Saigo, K.; Osaki, M.; Mukaiyama, T. Chem. Lett. 1976, 5, 163-164.
(29) Jankowska, J.; Mlynarski, J. J. Org. Chem. 2006, 71, 1317-1321.
¢
ACKNOWLEDGMENT
(30) Rodríguez-Gimeno, A.; Cuenca, A. B.; Gil-Tomás, J.; Medio-
Simón, M.; Olmos, A.; Asensio, G. J. Org. Chem. 2014, 79, 8263-8270.
The authors thank Prof. Ryong Ryoo and Mr. Jongho Han
(KAIST and IBS, Daejeon, Republic of Korea) for their help
with low-angle XRD and high-resolution transmission
electron microscopy analyses.
(31) Kobayashi, S. Synlett 1994, 689-701.
(32) Garro, R.; Navarro, M. T.; Primo, J.; Corma, A. J. Catal. 2005,
233, 342-350.
(33) Zhang, F.; Liang, C.; Chen, M.; Guo, H.; Jiang, H.; Li, H. Green
Chem. 2013, 15, 2865-2871.
(34) Chen, M.; Liang, C.; Zhang, F.; Li, H. ACS Sustain. Chem Eng.
2014, 2, 486-492.
¢
References
(1) Corma, A.; García, H. Chem. Rev. 2003, 103, 4307-4366.
(35) Dhakshinamoorthy, A.; Alvaro, M.; Chevreau, H.; Horcajada, P.;
Devic, T.; Serre, C.; Garcia, H. Catal. Sci. Tech. 2012, 2, 324-330.
(2) Kündig, E. P.; Saudan, C. M. Transition Metal Lewis Acids: From
Vanadium to Platinum. In Lewis Acids in Organic Synthesis; H.
Yamamoto, Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim,
2008, pp. 597-652.
(36) He, N.; Bao, S.; Xu, Q. Appl. Catal., A: General 1998, 169, 29-36.
(37) Choudhary, V. R.; Jana, S. K.; Mamman, A. S. Microporous
Mesoporous Mater. 2002, 56, 65-71.
(3) Anastas, P. T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686-
694.
(38) Jiang, Y.; Lin, K.; Zhang, Y.; Liu, J.; Li, G.; Sun, J.; Xu, X. Appl.
Catal., A: General 2012, 445ꢀ446, 172-179.
(4) Satterfield, Charles N. Heterogeneous catalysis in industrial
practice, 2nd ed; McGraw-Hill: New York, 1991.
(39) Berube, F.; Khadraoui, A.; Florek, J.; Kaliaguine, S.; Kleitz, F. J.
Colloid Interface Sci. 2015, 449, 102-114.
(5) Corma, A.; Nemeth, L. T.; Renz, M.; Valencia, S. Nature 2001, 412,
423-425.
(40) Grün, M.; Unger, K. K.; Matsumoto, A.; Tsutsumi, K.
Microporous Mesoporous Mater. 1999, 27, 207-216.
(6) Mizuno, N.; Misono, M. Chem. Rev. 1998, 98, 199-218.
(7) Sasidharan, M.; Kumar, R. J. Catal. 2003, 220, 326-332.
(8) Sasidharan, M.; Kumar, R. Catal. Lett. 1996, 38, 251-254.
(41) Kleitz, F.; Schmidt, W.; Schüth, F. Microporous Mesoporous
Mater. 2003, 65, 1-29.
(42) Choi, M.; Heo, W.; Kleitz, F.; Ryoo, R. Chem. Commun. 2003,
1340-1341.
(9) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;
Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548-552.
(43) Staub, H.; Guille-Nicolas, R.; Even, N.; Kayser, L.; Kleitz, F.;
Fontaine, F. G. Chem. Eur. J. 2011, 17, 4254-4265.
(10) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck,
J. S. Nature 1992, 359, 710-712.
(44) Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B 2001, 105,
6817-6823.
(11) Kim, T. W.; Kim, M. J.; Kleitz, F.; Nair, M. M.; Guillet-Nicolas,
R.; Jeong, K. E.; Chae, H. J.; Kim, C. U.; Jeong, S. Y. ChemCatChem 2012,
4, 687-697.
(45) Walling, C. J. Am. Chem. Soc. 1950, 72, 1164-1168.
(46ꢂ "•≤µ¢•á &äâ .Ø®°©≤á "äâ +¨•©¥∫á &äâ +°¨©°ßµ©Æ•á 3ä Chem. Mater.
2010, 22, 1988-2000.
(12) Zakharova, M. V.; Kleitz, F.; Fontaine, F. G. Dalton Trans 2017,
46, 3864-3876.
(47ꢂ +µŠ¥≤Ø∑≥´©á 0äâ #®≠©•¨°≤∫á ,äâ $∫©•≠¢°™á 2äâ #ØØ¨á 0äâ 6°Æ≥°Æ¥á
E. F. J. Phys. Chem. B 2005, 109, 11552-11558.
(13) Perego, C.; Millini, R. Chem. Soc. Rev. 2013, 42, 3956-3976.
(14) Duan, L.; Fu, R.; Zhang, B.; Shi, W.; Chen, S.; Wan, Y. ACS Catal.
2016, 6, 1062-1074.
(48ꢂ #®≠©•¨°≤∫á ,äâ +µŠ¥≤Ø∑≥´©á 0äâ $∫©•≠¢°™á 2äâ #ØØ¨á 0äâ 6°Æ≥°Æ¥á
E. F. Microporous Mesoporous Mater. 2010, 127, 133-141.
(15) Das, S.; Asefa, T. ACS Catal. 2011, 1, 502-510.
(49) Kleitz, F.; Bérubé, F.; Guillet-Nicolas, R.; Yang, C.-M.;
Thommes, M. J. Phys. Chem. C 2010, 114, 9344-9355.
(16) Rodriguez-Gomez, A.; Holgado, J. P.; Caballero, A. ACS Catal.
2017, 7, 5243-5247.
(50) Capdeillayre, C.; Mehsein, K.; Petitto, C.; Delahay, G. Top. Catal.
2016, 59, 901-906.
(17) Shang, L.; Bian, T.; Zhang, B.; Zhang, D.; Wu, L. Z.; Tung, C. H.;
Yin, Y.; Zhang, T. Angew. Chem. 2014, 126, 254-258.
(51) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge,
C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.;
McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992,
114, 10834-10843.
(18) Shen, D.; Chen, L.; Yang, J.; Zhang, R.; Wei, Y.; Li, X.; Li, W.;
Sun, Z.; Zhu, H.; Abdullah, A. M. ACS Appl. Mater. Interfaces 2015, 7,
17450-17459.
15
ACS Paragon Plus Environment