4
Tetrahedron
References and notes
18. For leading examples about β-silicon effect, see: (a) Danheiser, R. L.;
Carini, D. J.; Basak, A. J. Am. Chem. Soc. 1981, 103, 1604. (b)
Wierschke, S. G.; Chandrasekhar, J.; Jorgensen, W. L. J. Am. Chem. Soc.
1985, 107, 1496.
1. (a) Comprehensive Heterocyclic Chemistry III; Katritzky, A. R., Ramsden,
C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.; Elsevier: Oxford, U.K.,
2008; Vols. 3 and 11. (b) Dean, F. M. Naturally Occurring Oxygen Ring
Compounds; Butterworths: London, 1963; Chapter 1, p 1.
19. (a) General Procedure for the migratory cycloisomerization reaction of 8
to furans and pyrroles 9: An oven dried 1 mL V-shape vial equipped with
magnetic stir bar was loaded with commercially available
chloro(triphenylphosphine) gold (5 mol%, 12.5 mg) and silver
hexafluoroantimonate (5 mol%, 8.5 mg) in the glove box. 1,2-
dichloroethane (500 µL) was then added and reaction mixture was stirred
for 5 min at room temperature. Homopropargylic aldehydes or imines 8
(1.0 equiv, 0.5 mmol) as a solution in 1,2-dichloroethane (500 µL) was
added through cannula and the reaction mixture stirred at room
temperature until judged completed by GC/MS. The reaction mixture was
then passed through Celite®, solvents were removed under reduced
pressure, and the residue was purified by flash chromatography using
silica gel (Hex/EtOAc= 40/1) to give furans or pyrroles 9. Representative
example: 9e: 1H NMR (500 MHz, CDCl3) δ ppm 7.75 (d, J = 7.4 Hz, 4
H), 7.47 (t, J = 7.8 Hz, 2 H), 7.42 (t, J = 7.8 Hz, 2 H), 7.35-7.24 (m, 2H),
6.64 (s, 1 H), 2.36 (s, 3 H). 13C NMR (126 MHz, CDCl3) δ ppm 151.7,
148.2, 131.8, 130.8, 128.7, 128.6, 127.2, 126.7, 125.3, 123.7, 118.7,
110.8, 12.2.
2. (a) Estevez, V.; Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2010,
39, 4402. (b) hu, L. L.; Luo, J. S.; Hong, R. Org. Lett. 2014, 16, 2162.
3. For reviews, see: (a) Gribble, G. W.; Saulnier, M. G.; Pelkey, E. T.;
Kishbaugh, T. L. S.; Yanbing, L.; Jiang, J.; Trujillo, H. A.; Keavy, D. J.;
Davis, D. A.; Conway, S. C.; Switzer, F. L.; Roy, S.; Silva, R. A.; Obaza-
Nutaitis, J. A.; Sibi, M. P.; Moskalev, N. V.; Barden, T. C.; Chang, L.;
Habeski, W. M.; Pelcman, B.; Sponholtz, W. R., III; Chau, R. W.; Allison,
B. D.; Garaas, S. D.; Sinha, M. S.; McGowan, M. A.; Reese, M. R.; Harpp,
K. S. Curr. Org. Chem. 2005, 9, 1493. (b) Evano, G.; Blanchard, N.;
Toumi, M. Chem. Rev. 2008, 108, 3054. (c) Isambert, N.; Lavilla, R.
Chem.—Eur. J. 2008, 14, 8444. (d) Chinchilla, R.; Nájera, C.; Yus, M.
Chem. Rev. 2004, 104, 2667.
4. (a) Novak, P.; Muller, K.; Santhanum, K. S. V.; Haas, O. Chem. Rev. 1997,
97, 207. (b) Descalzo, A. B.; Xu, H. J.; Xue, Z. L.; Hoffmann, K.; Shen,
Z.; Weller, M. G.; You, X. Z.; Rurack, K. Org. Lett. 2008, 10, 1581. (c)
Lin, J. T.; Chen, P. C.; Yen, Y. S.; Hsu, Y. C.; Chou, H. H.; Yeh, M. C. P.
Org. Lett. 2009, 11, 97.
5. (a) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem.
Rev. 2013, 113, 3084. (b) Estevez, V.; Villacampa, M.; Menendez, J. C.
Chem. Soc. Rev. 2014, 43, 4633.
(b) General Procedure for the double migratory cycloisomerization
reaction of 8 to furans and pyrroles 10: An oven dried 20 mL round
buttom flask equipped with magnetic stir bar was loaded with
commercially
available
chloro[tris(2,3,4,5,6-pentafluorophenyl)-
phosphine] gold (5 mol%, , 19.1 mg) and silver hexafluoroantimonate (5
mol%, 8.5 mg) in the glove box. 1,2-dichloroethane (11 mL) was then
added and reaction mixture was stirred for 5 min at room temperature.
Homopropargylic aldehyde or imine 8 (1.0 equiv, 0.5 mmol) as a solution
in 1,2-dichloroethane (1.5 mL) was added through cannula and the
reaction mixture stirred at room temperature until judged completed by
GC/MS. The reaction mixture was then passed through Celite®, solvents
were removed under reduced pressure, and the residue was purified by
flash chromatography using silica gel (pure hexanes) to give furans or
pyrroles 10. Representative example: 10k: 1H NMR (500 MHz, CDCl3) δ
ppm 7.15 (s, 1 H), 2.64 - 2.55 (m, 2 H), 2.48 (tt, J = 1.8, 6.1 Hz, 2 H),
1.88 - 1.80 (m, 2 H), 1.79 - 1.72 (m, 2 H), 0.23 (s, 9 H). 13C NMR (126
MHz, CDCl3) δ ppm 151.2, 145.1, 120.3, 118.7, 23.3, 23.1, 23.0, 22.9, -
0.7.
6. (a) Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Aldrichim. Acta. 2010, 43,
37. (b) Obradors, C.; Echavarren, A. M. Acc. Chem. Res. 2014, 47, 902. (c)
Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953.
7. (a) Kirsch, S. F.; Binder, J. T.; Liebert, C.; Menz, H. Angew. Chem., Int.
Ed. 2006, 45, 5878. (b) Binder, J. T.; Crone, B.; Kirsch, S. F.; Liebert, C.;
Menz, H. Eur. J. Org. Chem. 2007, 1636. Also, See: (c) Umland, K. D.;
Palisse, A.; Haug, T. T.; Kirsch, S. F. Angew. Chem., Int. Ed. 2011, 50,
9965. (d) Zhang, Z. J.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Org. Lett.
2013, 15, 4822.
8. For a review, see: Umland, K. D.; Kirsch, S. F. Synlett. 2013, 24, 1471.
9. Chen, G. Q.; Zhang, X. N.; Wei, Y.; Tang, X. Y.; Shi, M. Angew. Chem.,
Int. Ed. 2014, 53, 8492.
10. (a) Li, W. B.; Li, Y. Y.; Zhou, G. H.; Wu, X. S.; Zhang, J. L. Chem-Eur J
2012, 18, 15113. (b) Li, W. B.; Li, Y. Y.; Zhang, J. L. Chem.-Eur. J.
2010, 16, 6447.
11. For cycloisomerization reactions of alkynyl imines and ketones, see: (a)
Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001,
123, 2074. (b) Kel'in, A. V; Gevorgyan, V. J. Org. Chem. 2002, 67,95.
For examples of using homopropargylic systems, see: (c) Kim, J. T.;
Kel'in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2003, 42, 98. (d)
Sromek, A. W.; Kel'in, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed.
2004, 43, 2280. (e) Schwier, T.; Sromek, A. W.; Yap, D. M. L.;
Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868. (f)
Dudnik, A. S.; Sromek, A. W.; Rubina, M.; Kim, J. T.; Kel'in, A. V.;
Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440.
12. (a) Crone, B.; Kirsch, S. F. Chem. –Eur. J. 2008, 14, 3514. (b) Dudnik, A.
S.; Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 5195. (c) Garayalde,
D.; Nevado, C. Beilstein J. Org. Chem. 2011, 7, 767.
13. For recent reviews of homogeneous gold-catalyzed reactions, see: (a)
Hashmi, A. S. K. Acc. Chem. Res. 2014, 47, 864. (b) Zhang, L. Acc.
Chem. Res. 2014, 47, 877. (c) Wang, Y. M.; Lackner, A. D.; Toste, F. D.
Acc. Chem. Res. 2014, 47, 889. (d) Zhang, D. H.; Tang, X. Y.; Shi, M.
Acc. Chem. Res. 2014, 47, 913. (e) Furstner, A. Acc. Chem. Res. 2014,
47, 925. (f) Liu, L. P.; Hammond, G. B. Chem. Soc. Rev. 2012, 41, 3129.
(g) Marco-Contelles, J.; Soriano, E. Chem.-Eur. J. 2007, 13, 1350. For
recent examples, see: (h) Rao, W.; Koh, M. J.; Li, D.; Hirao, H.; Chan, P.
W. H. J. Am. Chem. Soc. 2013, 135, 7926. (i) Cao, Z. P.; Gagosz, F.
Angew. Chem., Int. Ed. 2013, 52, 9014. (j) Hofer, M.; Gomez-Bengoa,
E.; Nevado, C. Organometallics 2014, 33, 1328. (l) Pagar, V. V.; Jadhav,
A. M.; Liu, R. S. J. Am. Chem. Soc. 2011, 133, 20728.
14. Dudnik, A. S.; Xia, Y. Z.; Li, Y. H.; Gevorgyan, V. J. Am. Chem. Soc.
2010, 132, 7645.
15. (a) Kazem Shiroodi, R.; Gevorgyan, V. Chem. Soc. Rev. 2013, 42, 4991.
(b) Kazem Shiroodi, R.; Dudnik, A. S.; Gevorgyan, V. J. Am. Chem. Soc.
2012, 134, 6928. (c) Gronnier, C.; Boissonnat, G.; Gagosz, F. Org. Lett.
2013, 15, 4234.
16. Istrate, F. M.; Gagosz, F. Org. Lett. 2007, 9, 3181.
17. The optimized reaction conditions for migratory cascade reaction (Table
1) did not work for the double migratory process (Table 2). Thus, it was
found that the highly electrophilic (C6F5)3PAuSbF5 catalyst under more
diluted reaction conditions was the best.