S. M. Islam et al.
mixtures shows that if any ruthenium is present it is below the de-
tection limit. UV–visible spectroscopy was also used to determine
the stability of this catalyst. The UV–visible spectra of the reaction
solution, at the first run, does not show any absorption peaks
characteristic of ruthenium metal, which indicates that the leaching
of metal does not take place during the course of the reaction. The
metal content of the recycled catalyst was determined with
the help of AAS and it is found that the ruthenium content of the
recycled catalyst remains almost unaltered. These observations
strongly suggest that the present catalyst is truly heterogeneous
in nature.
Heterogeneity testing was carried out for the hydration of
benzonitrile as an example. For the rigorous proof of heterogeneity,
a test was carried out by filtering catalyst from the reaction mixture at
90° for 4 h and the filtrate was allowed to react up to the completion
of the reaction (7 h). The reaction mixture at 4 h and the filtrate were
analysed using GC. No change in the yield of amide is found which
indicates that the present catalyst is heterogeneous in nature.
References
[1] K. Yamaguchi, H. Kobayashi, Y. Wang, T. Oishi, Y. Ogasawara, N. Mizuno,
Catal. Sci. Technol. 2013, 3, 318.
[2] C. Chen, S. Hyeok Hong, Org. Biomol. Chem. 2011, 9, 20.
[3] C. E. Mabermann, in Encyclopedia of Chemical Technology, Vol. 1 (Ed.: J. I.
Kroschwitz), John Wiley, New York, 1991, p. 251.
[4] D. Lipp, in Encyclopedia of Chemical Technology, Vol. 1 (Ed.: J. I.
Kroschwitz), John Wiley, New York, 1991, p. 266.
[5] R. Opsahl, in Encyclopedia of Chemical Technology, Vol. 2 (Ed.: J. I.
Kroschwitz), John Wiley, New York, 1991, p. 346.
[6] A. Greenberg, C. M. Breneman, J. F. Liebman (Eds), The Amide Linkage:
Structural Significance in Chemistry, Biochemistry and Material Science,
Wiley, New York, 2000.
[7] J. S. Carey, D. Laffan, C. Thomson, M. T. Williams, Org. Biomol. Chem.
2006, 4, 2337.
[8] E. Valeur, M. Bradley, Chem. Soc. Rev. 2009, 38, 606.
[9] S. Gaspa, A. Porcheddu, L. De Luca, Org. Biomol. Chem. 2013, 11, 3803.
[10] E. Saxo, C. Z. Bertozzi, Science 2000, 287, 2007.
[11] F. Damkaci, P. De Shong, J. Am. Chem. Soc. 2003, 125, 4408.
[12] Y. G. Gololobov, L. F. Kasukhin, Tetrahedron 1992, 48, 1353.
[13] T. Ribelin, C. E. Katz, D. G. English, S. Smith, A. K. Manukyan, V. W. Day,
B.Neuenswander, J. L. Poutsma, J. Aube,Angew. Chem. Int. Ed. 2008, 47, 6233.
[14] S. Lang, J. A. Murphy, Chem. Soc. Rev. 2006, 35, 146.
[15] N. A. Owston, A. J. Parker, J. M. J. Williams, Org. Lett. 2007, 9, 3599.
[16] M. Hashimoto, Y. Obora, S. Sakaguchi, Y. Ishii, J. Org. Chem. 2008, 73, 2894.
[17] L. Perreux, A. Loupy, F. Volatron, Tetrahedron 2002, 58, 2155.
[18] C. L. Allen, A. R. Chhatwal, J. M. J. Williams, Chem. Commun. 2012, 48, 666.
[19] J. W. W. Chang, T. M. U. Ton, S. Tania, P. C. Taylor, P. W. H. Chan, Chem.
Commun. 2010, 46, 922.
Recycling of Catalyst
The catalyst remains insoluble under the reaction conditions used
here and hence can be easily separated by simple filtration
followed by washing. The catalyst was washed with dichlorometh-
ane and dried at 100°C. Hydration of benzonitrile was carried out
with the recycled catalyst under the optimized reaction conditions.
The catalyst was recycled in order to test its activity as well as its
stability. The obtained results are presented in Fig. 7. As can be
seen, the recycled catalyst does not show any appreciable change
in activity which indicates that the catalyst is stable and can be
regenerated for repeated use. Similarly, recycling of the catalyst
was tested for the reaction between 3-phenylpropan-1-ol and
benzylamine. No appreciable change in conversion indicates that
the catalyst can be reused.
[20] T. M. U. Ton, C. Tejo, S. Tania, J. W. W. Chang, P. W. H. Chan, J. Org. Chem.
2011, 76, 4894.
[21] S. C. Ghosh, J. S. Y. Ngiam, C. L. L. Chai, A. M. Seayad, T. T. Dang, A. Chen,
Adv. Synth. Catal. 2012, 354, 1407, and references therein.
[22] S. C. Ghosh, J. S. Y. Ngiam, A. M. Seayad, D. T. Tuan, C. L. L. Chai, A. Chen,
J. Org. Chem. 2012, 77, 8007.
[23] K. S. Goh, C. H. Tan, RSC Adv. 2012, 2, 5536.
[24] X. Liu, K. F. Jensen, Green Chem. 2012, 14, 1471.
[25] G. L. Li, K. K. Y. Kung, M. K. Wong, Chem. Commun. 2012, 48, 4112.
[26] M. Zhu, K. I. Fujita, R. Yamaguchi, J. Org. Chem. 2012, 77, 9102.
[27] R. García-Álvarez, P. Crochet, V. Cadierno, Green Chem. 2013, 15, 46.
[28] T. Mitsudome, Y. Mikami, H. Mori, S. Arita, T. Mizugaki, K. Jitsukawaa,
K. Kaneda, Chem. Commun. 2009, 3258.
[29] G. E. Dobereiner, R. H. Crabtree, Chem. Rev. 2010, 110, 681.
[30] C. Gunanathan, T. Ben-David, D. Milstein, Science 2010, 317, 790.
[31] T. Oshiki, H. Yamashita, K. Sawada, M. Utsunomiya, K. Takahashi,
K. Takai, Organometallics 2005, 24, 6287.
[32] V. Polshettiwar, R. S. Varma, Chem. Eur. J. 2009, 15, 1582.
[33] P. K. Mascharak, Coord. Chem. Rev. 2002, 225, 201.
[34] T. J. Ahmed, S. M. M. Knapp, D. R. Tyler, Coord. Chem. Rev. 2010, 255, 949.
[35] V. Y. Kukushkin, A. J. L. Pombeiro, Inorg. Chim. Acta 2005, 358, 1.
[36] V. Y. Kukushkin, A. J. L. Pombeiro, Chem. Rev. 2002, 102, 1771.
[37] J. L. Eglin, Comments Inorg. Chem. 2002, 23, 23.
[38] A. W. Parkins, Platinum Met. Rev. 1996, 40, 169.
[39] B. Schultz, K. Drauz, H. Waldmann, Enzyme Catalysis in Organic Synthesis,
Wiley-VCH, Weinheim, 2002, pp. 699.
[40] K. Weissermel, H. J. Arpe, Industrial Organic Chemistry, 4th edn, Wiley-
VCH, Weinheim, 2003, pp. 310.
Conclusions
We have developed and characterized an efficient polymer-
anchored ruthenium(II) complex catalyst. This catalyst is efficient for
the hydration of nitriles with various functional groups. The primary
amides from these nitriles are prepared via an ideal green process,
i.e. water as the green solvent and in air. This catalyst also shows
excellent catalytic activity in the preparation of secondary amides
from alcohols and amines. The advantages of the catalytic system
discussed here include easy catalyst preparation and simple reaction
setup. The catalyst is stable under the reaction conditions used. This
heterogeneous catalyst shows no significant loss of activity in
recycling experiments. The active sites do not leach out from the
support and thus the catalyst can be reused without appreciable loss
of activity, indicating that the anchoring procedure is effective. The
reusability of this catalyst is high and it can be reused six times with-
out significant decrease in its initial activity. We expect that the pres-
ent catalytic system will have a bright future in industrial applications.
[41] K. Tani, Y.Kataoka, A. Togni,H.Grutzmacher,Catalytic Heterofunctionalization,
Wiley-VCH, New York, 2001, pp. 171.
[42] M. N. Kopylovich, V. Y. Kukushkin, M. Hauka, J. J. R. Frausto da Silva,
A. J. L. Pombeiro, Inorg. Chem. 2002, 41, 4798.
[43] W. K. Fung, X. Huang, M. L. Man, S. M. Ng, M. Y. Hung, Z. Lin, C. P. Lau,
J. Am. Chem. Soc. 2003, 125, 11539.
[44] X. Jiang, A. J. Minnaard, B. L. Feringa, J. G. de Vries, J. Org. Chem. 2004, 69, 2327.
[45] K. L. Breno, M. D. Pluth, D. R. Tyler, Organometallics 2003, 22, 1203.
[46] K. L. Breno, M. D. Pluth, C. W. Landorf, D. R. Tyler, Organometallics 2004,23, 1738.
[47] S. I. Murahashi, T. Naota, Bull. Chem. Soc. Jpn. 1996, 69, 1805.
[48] T. Ghaffar, A. W. Parkins, J. Mol. Catal. A 2000, 160, 249.
[49] A. Goto, K. Endo, S. Saito, Angew. Chem. 2008, 120, 3663.
[50] C. Battilocchio, J. M. Hawkins, S. V. Ley, Org. Lett. 2014, 16, 1060.
[51] T. Subramanian, K. Pitchumani, Catal. Commun. 2012, 29, 109.
[52] Y.-M. Liu, L. He, M.-M. Wang, Y. Cao, H.-Y. He, K.-N. Fan, ChemSusChem
2012, 5, 1392.
Acknowledgements
SMI acknowledges the Department of Science and Technology
(DST) and Council of Scientific and Industrial Research (CSIR), New
Delhi, India, for funding. RAM acknowledges UGC, New Delhi, for
his Maulana Azad National Fellowship (F1-17.1/2012-13/MANF-
2012-13-MUS-WES-9628/SA-III). ASR acknowledges CSIR, New Delhi,
for providing his senior research fellowship.
[53] W.-C. Lee, B. J. Frost, Green Chem. 2012, 14, 62.
wileyonlinelibrary.com/journal/aoc
Copyright © 2014 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2014, 28, 900–907