N. Huther et al. / Tetrahedron Letters 43 (2002) 2535–2538
2537
Cl
Cl
Cl
Cl
O
N
O
N
BrMn(CO)5
(1 equiv.)
CCl3
N
10 (18%)
11 (16%)
+
O
CH2Cl2, hv,
NaOH, H2O,
BTAC
H
Cl
Cl
9
O
N
O
N
12 (21%)
13 (20%)
Scheme 4.
−Mn(CO)5. In order to distinguish these pathways, the
same reaction [using BrMn(CO)5] was carried out in
D2O rather than H2O. Any incorporation of deuterium
in the products would identify compounds derived from
intermediate organomanganese adducts. Interestingly,
monochlorinated products 12 and 13 showed complete
deuteration of the CH2Cl and CHCl groups adjacent to
the amide carbonyl (by 1H NMR spectroscopy). In
comparison, dichloroamide 10 showed 50% incorpora-
tion of deuterium at the CHCl2 position while cyclic
dichloride 11 did not contain any deuterium. This
suggests that initial organomanganese adducts are
Acknowledgements
We thank Cytec Fiberite Ltd for support and the
University of York for funding.
References
1. (a) Bowman, W. R.; Cloonan, M. O.; Krintel, S. L. J.
Chem. Soc., Perkin Trans. 1 2001, 2885–2902; (b) Par-
sons, A. F. An Introduction to Free Radical Chemistry;
Blackwell Science: Oxford, 2000.
−
formed from reaction of 9 with Mn(CO)5, which are
then hydrolysed. The formation of pyrrolidinones 11
and 13 also indicates the generation of an a-amido
radical, which on 5-exo cyclisation, forms a primary
radical that abstracts a hydrogen atom from the solvent
CH2Cl2. Indeed, the role of CH2Cl2 as a hydrogen atom
donor in this reaction was confirmed by reacting 9 with
BrMn(CO)5 in CD2Cl2.
2. Baguley, P. A.; Walton, J. C. Angew. Chem., Int. Ed.
1998, 37, 3072–3082.
3. Studer, A.; Amrein, S. Angew. Chem., Int. Ed. 2000, 39,
3080–3082.
4. (a) Graham, S. R.; Murphy, J. A.; Coates, D. Tetra-
hedron Lett. 1999, 40, 2415–2416; (b) Martin, C. G.;
Murphy, J. A.; Smith, C. R. Tetrahedron Lett. 2000, 41,
1833–1836; (c) Graham, S. R.; Murphy, J. A.; Kennedy,
A. R. J. Chem. Soc., Perkin Trans. 1 1999, 3071–3073; (d)
Kita, Y.; Nambu, H.; Ramesh, N. G.; Anilkumar, G.;
Matsugi, M. Org. Lett. 2001, 3, 1157–1160; (e) Yorim-
itsu, H.; Shinokubo, H.; Oshima, K. Bull. Chem. Soc.
Jpn. 2001, 74, 225–235; (f) Yorimitsu, H.; Shinokubo, H.;
Oshima, K. Chem. Lett. 2000, 104–105; (g) Reding, M.
T.; Fukuyama, T. Org. Lett. 1999, 1, 973–976.
5. (a) Barks, J. M.; Gilbert, B. C.; Parsons, A. F.; Upean-
dran, B. Tetrahedron Lett. 2001, 42, 3137–3140; (b)
Barks, J. M.; Gilbert, B. C.; Parsons, A. F.; Upeandran,
B. Synlett 2001, 1719–1722; (c) Barton, D. H. R.; Jang,
D. O.; Jaszberenyi, J. Cs. J. Org. Chem. 1993, 58, 6838–
6842; (d) Herpin, T. F.; Motherwell, W. B.; Roberts, B.
P.; Roland, S.; Weibel, J.-M. Tetrahedron 1997, 53,
15085–15100.
This work has shown, for the first time, that manganese
carbonyl-mediated carbon–carbon bond forming reac-
tions can be carried out in biphasic conditions. The
incorporation of an aqueous alkaline solution and a
phase transfer catalyst effectively removes BrMn(CO)5
from organic products, which are retained in the
dichloromethane layer. Indeed, this work has shown
that BrMn(CO)5 can be used in place of Mn2(CO)10 in
coupling and cyclisation reactions. The use of
Mn2(CO)10 or BrMn(CO)5 in biphasic conditions can
also lead to alternative products to those observed
when using Mn2(CO)10 in dichloromethane. This can be
explained by the formation of −Mn(CO)5, which can
react with organohalides to produce organomanganese
adducts. The formation of organomanganese adducts
[e.g. BnMn(CO)5] under such mild reaction conditions
is of particular note and this method offers a flexible
approach to these types of compounds, which have
been shown to undergo synthetically important ionic
and/or radical reactions.
6. Gilbert, B. C.; Lindsay, C. I.; McGrail, P. T.; Parsons, A.
F.; Whittaker, D. T. E. Synth. Commun. 1999, 29, 2711–
2718.
7. (a) Gilbert, B. C.; Kalz, W.; Lindsay, C. I.; McGrail, P.
T.; Parsons, A. F.; Whittaker, D. T. E. Tetrahedron Lett.