ChemCatChem
10.1002/cctc.201700168
Further information can be obtained from the Supporting
Information.
The chemical composition of single nanoparticles was
Keywords: NiIr
4
• NiOs
4
• Nanoparticle • Hydrogenation •
Cinnamaldehyde • Diphenylacetylene
investigated by energy-dispersive X-ray spectroscopy (EDXS)
3
performed with the FEI Titan 80-300 microscope at 300 keV
_
electron energy by using an EDAX Si(Li) detector. EDX spectra
are quantified with the FEI software package “TEM imaging and
analysis” (TIA) version 3.2. Using TIA, element concentrations
were calculated on the basis of a refined Kramers’ law model,
which includes corrections for detector absorption and
background subtraction. Further information can be obtained from
the Supporting Information.
[
1] Recent reviews: a) K. An, G. A. Somorjai, Catal. Lett. 2015, 145,
2
33-248. b) A. K. Singh, Q. Xu, ChemCatChem 2013, 5, 652-676.
c) M. Sankar, N. Dimitratos, P. J. Miedziak, P. P. Wells, C. J.
Kiely, G. J. Hutchings, Chem. Soc. Rev. 2012, 41, 8099-8139.
[2] A. Meffre, V. Iablokov, Y. Xiang, R. Barbosa, P. F. Fazzini, V.
Kelsen, N. Kruse, B. Chaudret, Catal. Lett. 2015, 145, 373-379.
[3] M. Armbrüster, K. Kovnir, M. Friedrich, D. Teschner, G.Wowsnick,
M. Hahne, P. Gille, L. Szentmiklósi, M. Feuerbacher, M. Heggen,
F. Girgsdies, D. Rosenthal, R. Schlögl, Y. Grin, Nature Mater.
X-ray powder diffraction (XRD) analysis was carried out on a
Stoe
Stadi-P
diffractometer
using
Cu-Kα1
radiation
2012, 11, 690-693.
( = 0.1540598 nm) monochromated by a focusing Ge crystal. A
[
4] J. R. Renzas, W. Huang, Y. Zhang, M. E. Grass, G. A. Somorjai,
Catal. Lett. 2011, 141, 235-241.
5] G. H. Wang, J. Hilgert, F. H. Richter, F. Wang, H. J. Bongard, B.
Spliethoff, C. Weidenthaler, F. Schueth, Nature Mater. 2014, 13,
position sensitive detector [Stoe IP-PSD, 70 °(2) angular
aperture] was used to record the XRD patterns with a step size of
[
0.03 °(2). The detector channels were calibrated with the line-
positions of a Si standard. Further information can be obtained
from the Supporting Information.
293-300.
[
6] G. J. Hutchings, Catal. Today 2014, 238, 69-73.
Thermogravimetry (TG) measurements were performed with
[7] a) H.-L. Jiang, Q. Xu, J. Mater. Chem. 2011, 21, 13705-13725. b)
S. K. Singh, M. Yadav, S. Behrens, P. W. Roesky, Dalton Trans.
2013, 42, 10404-10408.
[8] R. Kumar Rai, K. Gupta, S. Behrens, J. Li, Q. Xu, S. K. Singh,
ChemCatChem 2015, 7, 1806-1812.
a NETZSCH STA 449 F3 applying α-Al
O
2 3
as crucible material.
The samples were heated under N
heating rate of 5 °C/min.
2
flow to 1400 °C with a
Catalytic experiments
[9] a) H. N. Nong, H. S. Oh, T. Reier, E. Willinger, M. G. Willinger, V.
Petkov, D. Teschner, P. Strasser, Angew. Chem. Int. Ed. 2015,
Hydrogenation reactions were carried out in a stainless steel
autoclave (200 mL). The autoclave was equipped with a telfon
inlay, a mechanical blowing stirrer (teflon) and baffles (stainless
steel) to achieve intimate mixing between the gas and the liquid
phase, a thermocouple and a heating bath. The catalyst and the
organic substrate were loaded in the autoclave under argon
atmosphere. Dry solvents were used in all catalytic experiments.
In a typical experiment, the nanoparticles were dispersed in
hexane (3-5 mL) using an ultrasonic bath, mixed with the organic
substrate and added to the autoclave reactor. After heating the
mixture to the reaction temperature, the stirrer was started
5
4, 2975-2979. b) H. N. Nong, L. Gan, E. Willinger, D. Teschner,
P. Strasser, Chem. Sci. 2014, 5, 2955-2963.
[10] a) P. Zhao, N. Cao, J. Su, W. Luo, G. Sheng, ACS Sustainable
Chem. Eng. 2015, 3, 1086-1093. b) C. Cakanyildirim, U. B.
Demirci, T. Sener, Q. Xu, P. Miele, Int. J. Hydrogen Energy 2012,
37, 9722-9729. c) S. K. Singh, Q. Xu, Chem. Commun. 2010, 46,
6545-6547.
[
11] a) K. Sasaki, K. A. Kuttiyiel, L. Barrio, D. Su, A. I. Frenkel, N.
Marinkovic, D. Mahajan, R. R. Adzic, J. Phys. Chem. 2011, 115,
9894-9902. b) J. Liao, W. Ding, S. Tao, Y. Nie, W. Li, G. Wu, S.
Chen, L. Li, Z. Wei, Chin. J. Catal. 2016, 37, 1142-1148. c) W.
Zhang, L. Li, W. Ding, S. Chen, H. Wang, Z. Wei, J. Mater. Chem.
A 2014, 2, 10098-10103.
(
1200 rpm). The reaction was initiated by introducing hydrogen
into the reactor. During catalytic experiments, the hydrogen
pressure was kept constant at 10 bar and hydrogen was
continuously supplied to the reactor by a gas burette (500 mL,
Parr). The consumption of hydrogen was recorded automatically
based on the pressure drop in the gas burette. The selectivity and
conversion in the hydrogenation of cinnamaldehyde and
[
[
12] H. Ziaei-Azad, N. Semagina, ChemCatChem 2014, 6, 885-894.
13] W. Lin, H. Cheng, L. He, Y. Yu, F. Zhao, J. Catal. 2013, 303, 110-
116.
[
14] R. Marcos Esteban, K. Schütte, P. Brandt, D. Marquardt, H.
Meyer, F. Beckert, R. Mülhaupt, H. Kölling, C. Janiak, Nano-
Structures & Nano-Objects 2015, 2, 11-18.
diphenylacetylene were determined by
detection gas chromatograph (GC-FID, Agilent) equipped with a
J&W SCIENTIFIC DB5 column (Agilent Technology,
a
flame ionization
[15] L. J. Durndell, C. M. A. Parlett, N. S. Hondow, M. A. Isaacs, K.
Wilson, A. F. Lee, Sci. Rep. 2015, 5, 1-9.
[16] P. Gallezot, D. Richard, Catal. Rev. Sci. Eng. 1998, 40, 81-126.
[17] S. C. Yang, N. Chen, P. Nash, Phase Diagrams of Binary Nickel
Alloys, ASM, Materials Park, OH, 1991, 181-182.
30 m×0.25 mm, 0.25 µm film thickness) and a Stabilwax-Da
column (30 m×0.25 mm, 0.25 µm film thickness), respectively.
The determination of the turn over frequency (TOF) requires
the quantitative determination of the number of active centers of
[
18] a) J. I. Langford, R. Delhez, T. H. de Keijser, E. J. Mittemeijer,
Aust. J. Phys. 1998, 41, 173-178. b) R. Delhez, T. H. de Keijser,
E. J. Mittemeijer, Fresenius Z. Anal. Chem. 1988, 312, 1-16.
the catalyst, which is typically not [
a
simple task for
29]
[19] E. Bucher, W. F. Brinkman, J. P. Maita, A. S. Cooper, Phys. Rev.
B 1970, 1, 274-277.
heterogeneous catalysts or nanoparticles. Therefore, the TOF
of heterogeneous catalysts or nanoparticles have been often
related to the total amount of the active phase (moles of metal
used) or its surface area. Typically, only the atoms exposed on
the nanoparticle surface (or a fraction of them) are catalytically
active. In our experiments, the TOF based on surface atoms
[
20] a) T. Y. Velikanova, T. G. Mazhuga, O. L. Semenova, P. S.
Martsenyuk, V. M. Vereshchaka, Powder Metallurgy and Metal
Ceramics 2002, 41, 288-295. b) A. A. Samadi, M. Fedoroff, Scri.
Metall. 1977, 11, 509-512.
[21] a) C. Li, Y. Chen, S. Zhang, S. Xu, J. Zhou, F. Wang, M. Wei, D.
Evans, X. Duan, Chem. Mater. 2013, 25, 3888-3896. b) K.
Rodiansono, S. Khairi, T. Hara, N. Ichikunia, S. Shimazu, Catal.
Sci. Technol. 2012, 2, 2139-2145.
(
TOF
compare the catalytic performance of the nanoparticle catalysts.
The total average atom number (N ) and the number of surface
atoms (N were calculated using the average nanoparticle
s
) were calculated according to equation (1) and used to
T
[22] H. Jeong, C. Kim, S. Yang, H. Lee, J. Catal. 2016, 344, 609-615.
s
)
[30]
[23] G.-H. Wang, X. Deng, D. Gu, K. Chen, H. Tüysüz, B. Spliethoff,
H.-J. Bongard, C. Weidenthaler, W. Schmidt, F. Schüth, Angew.
Chem. Int. Ed. 2016, 55, 11101-11105.
diameter obtained by TEM analysis.
ꢄꢅꢆꢇꢈꢉꢊꢋꢅꢆꢌꢍꢎꢏꢐꢆꢑꢒꢓꢔꢕꢍꢖꢅꢗꢏꢌ
ꢀꢁꢂ ꢃ
ꢡ
ꢦꢧꢨꢩ
(1)
ꢢ
ꢆꢘꢙꢚꢛꢜꢝꢞꢛꢚꢛꢜꢟꢠꢚꢍꢖꢅꢗꢏꢐ ꢐꢤꢋꢖꢈꢍꢥꢏ
ꢡꢣ
[24] T. Komatsua, K. Takagib, K. Ozawa, Catal. Today 2011, 164,
1
43-147.
25] S. Furukawa, A. Yokoyama, T. Komatsu, ACS Catal. 2014, 4,
581-3585.
[
[
3
Acknowledgments
26] F. Studt, F. Abild-Pedersen, T. Bligaard, R. Sørensen, C.
Christensen, J. Nørskov, Science 2008, 320, 1320-1322.
27] H. Konnerth, M. Precht, Chem. Commun. 2016, 52, 9129-9132.
28] L. B. Kiss, J. Söderlund, G. A. Niklasson, C. G. Granqvist,
Nanotechnol. 1999, 10, 25-28.
The
authors
thank
the
Deutsche
[
[
Forschungsgemeinschaft (DFG) for funding in the Priority
Program SPP1708 “Synthesis near room temperature”.
[29] P. E. Strizhak, Theoret. Exp. Chem. 2013, 49, 2-21.
[30] H. Hosseini-Monfared, H. Meyer, C. Janniak, J. Mol. Catal. A
2013, 372, 72-78.
This article is protected by copyright. All rights reserved.