10.1002/cctc.201900318
ChemCatChem
COMMUNICATION
catalysed N-alkylation of amines by alcohols via hydrogen
autotransfer. The catalysts had high activities and good
selectivities. The alloy catalysts were stable during the reaction
and metal was not leached into the reaction solution. The
catalysts were recycled without the need for complicated
activation processes. We have proposed a reaction mechanism
for this system on the basis of control experiments.
Acknowledgements
We thank the members of the Comprehensive Analysis Center,
SANKEN (ISIR), Osaka University for ICP-AES analysis. High-
resolution mass spectra were performed at Global Facility Center,
Hokkaido University.
Scheme 2. Mechanistic studies of N-alkylation reaction.
This is a product of research which was financially supported by
JSPS KAKENHI Grant Number 17K14837, the Environment
Research and Technology Development Fund (2RF-1801) of the
Environmental Restoration and Conservation Agency of Japan,
and the Kansai University Fund for Supporting Young Scholars,
2017.
Based on the results of these control experiments and
deuterium labelling experiments, we propose a plausible catalytic
cycle (Scheme 3). Initially, benzyl alcohol (2a) coordinates with
Ti–Pd(Hy). Abstraction of a methylene proton by Ti–Pd(Hy) forms
benzaldehyde 2a’ with simultaneous generation of a [Ti–Pd(Hy)–
H] species. Benzaldehyde then reacts with aniline (1a) to give
imine intermediate 4a. The imine is hydrogenated by [Ti–Pd(Hy)–
H] and benzyl alcohol to generate the desired N-alkylamine
product 3a. Hydrogen source was from alcohols during the course
of the reaction and hydrogen adsorption of alloys were not
involved in the reaction.
Keywords: Alloy catalysts • Hydrogen transfer • Alkylation•
Alcohols • Heterogeneous catalysis
[1]
a) J. B. Goodenough, Energy Environ. Sci. 2014, 7, 14–18; b) M. Dinca,
Y. Surendranath, D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A. 2010, 107,
10337–10341; c) A. Roucoux, J. Schulz, H. Patin, Chem. Rev. 2002, 102,
3757–3778. d) M. I. Hoffert, K. Caldeira, A. K. Jain, E. F. Haites, L. D. D.
Harvey, S. D. Potter, M. E. Schlesinger, S. H. Schneider, R. G. Watts, T.
M. L. Wigley, D. J. Wuebbles, Nature 1998, 395, 881–884.
[2]
[3]
a) R. Sheldon, Chem. Commun. 2001, 23, 2399–2407; b) P. I. Dalko, L.
Moisan, Angew. Chem., Int. Ed. 2004, 43, 5138–5175; Angew. Chem.
2004, 116, 5248–5286; c) A. T. Bell, Science 2003, 299, 1688–1691.
a) K. Onishi, K. Oikawa, H. Yano, T. Suzuki, Y. Obora, RSC Adv. 2018,
8, 11324–11329; b) K. Oikawa, S. Itoh, H. Yano, H. Kawasaki, Y. Obora,
Chem. Commun. 2017, 53, 1080–1083; c) H. Oka, K. Kitai, T. Suzuki, Y.
Obora, RSC Adv. 2017, 7, 22869–22874; d) Y. Isomura, T. Narushima,
H. Kawasaki, T. Yonezawa, Y. Obora, Chem. Commun. 2012, 48, 3784–
3786; e) H. Yano, Y. Nakajima, Y. Obora, J. Organomet. Chem. 2013,
745–746, 258–261; f) M. Hyotanishi, Y. Isomura, H. Yamamoto, H.
Kawasaki, Y. Obora, Chem. Commun. 2011, 47, 5750–5752; g) H.
Yamamoto, H. Yano, H. Kouchi, Y. Obora, R. Arakawa, H. Kawasaki,
Nanoscale 2012, 4, 4148–4154; h) R. Azuma, S. Nakamichi, J. Kimura,
H. Yano, H. Kawasaki, T. Suzuki, R. Kondo, Y. Kanda, K. Shimizu, K.
Kato, Y. Obora, ChemCatChem 2018, 10, 2378–2382.
[4]
[5]
[6]
a) R. Kondo, S. Nakamichi, R. Azuma, Y. Takahashi, Y. Obora, H. T.
Takeshita, Mater. Trans. 2018, 59, 1911–1914.
a) R. Azuma. Y. Takahashi, R. Kondo, T. Suzuki, H. T. Takeshita, Y.
Obora, Bull. Chem. Soc. Jpn. in press: DOI:10.1246/bcsj.20180363.
a) N. Mizuno, M. Misono, Chem. Rev. 1998, 98, 199–217; b) W. Ai, R.
Zhong,
X.
Liu,
Q.
Liu,
Chem.
Rev.
in
press:
DOI:10.1021/acs.chemrev.8b00404; c) T. Shinoki, K. Ota, Y. Sono, Y.
Okuhigashi, J. Funaki, K. Hirata, Nippon Kikai Gakkai Ronbunshu, B-hen
2012, 78, 1662–1670; d) D. Formenti, F. Frretti, F. K. Scharnagl, M.
Beller, Chem. Rev. in press; DOI: 10.1021/acs.chemrev.8b00547; e) M.
Pagliaro, V. Pandarus, R. Ciriminna, F. Beland, P. Demma Cara,
ChemCatChem 2012, 4, 432–445; f) M. Bhadra, H. S. Sasmal, A. Basu,
S. P. Midya, S. Kandambeth, P. Pachfule, E. Balaraman, R. Banerjee,
ACS Appl. Mater. Interfaces 2017, 9, 13785–13792.
Scheme 3. Plausible catalytic cycle for Ti–Pd(Hy)-catalysed N-alkylation of
aniline (1a) with benzyl alcohol (2a).
In conclusion, Ti–Pd alloy catalysts were used as catalysts for
hydrogen autotransfer. The Ti–Pd alloys were hydrogenated and
powdered to give Ti–Pd(Hy), which had higher catalytic activity in
the reaction than Ti–Pd flakes had. We investigated Ti–Pd(Hy)-
[7]
a) C. Chen, Y. Cao, S. Liu, J. Chen, W. Jia, Chin. J. Catal. 2018, 39,
1347–1365; b) H. F. Li, Y. F. Zheng, Acta Biomater. 2016, 36, 1–20; c)
This article is protected by copyright. All rights reserved.