PHOSPHORUS, SULFUR, AND SILICON AND THE RELATED ELEMENTS
5
Rearrangement. RSC Adv. 2016, 6, 45036–45040. doi:10.1039/
[9] Sun, C.; Yao, W.; Zhang, B.; Huang, X.; Yu, J. Zn-Catalyzed
Beckmann Rearrangement Reaction. Chin. J. Org. Chem. 2018,
[10] Kiely-Collins, H.; Sechi, I.; Brennan, P.; McLaughlin, M. Mild,
Calcium Catalysed Beckmann Rearrangements. Chem.
[16] Denton, R. M.; An, J.; Adeniran, B. Phosphine Oxide-Catalysed
Chlorination Reactions of Alcohols under Appel Conditions.
[17] Denton, R. M.; Tang, X.; Przeslak, A. Catalysis of
Phosphorus(V)-Mediated
Transformations:
Dichlorination
Reactions of Epoxides under Appel Conditions. Org. Lett. 2010,
[11] (a) Furuya, Y.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc.
Cha, C.; Deng, W.-P.; Shi, X. X. Tetrahedron Lett. 2006, 47,
Obora, Y.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2008, 73,
H. J.; Eriksson, L. A.; Deng, W. P. J. Org. Chem. 2013, 78,
R.; Bombrun, A.; Mandal, A. B. Tetrahedron Lett. 2011, 52,
Vavasori, A.; Bortoluzzi, M. Catal. Commun. 2008, 10,
Li, Z.; Guo, T.; Xu, S.; Zhu, H.; Wei, F.; Chen, S.; Gebru, H.;
joc.7b02983; (h) Vanos, C. M.; Lambert, T. H. Chem. Sci. 2010,
Ang, H.; Hall, G. J. Am. Chem. Soc. 2018, 140, 5264–5271. doi:
(k) Zhou, A.; Zheng, D.; Zhu, X.; Wang, M. Chin. J. Org.
Oishi, R.; Segi, K.; Hamamoto, H.; Nakamura, A.; Maegawa, T.;
[12] (a) Linares, M.; Vargas, C.; Garcia, A.; Ochoa-Hernandez, C.;
Cejka, J.; Garcia-Munoz, R.; Serrano, D. Catal. Sci. Technol.
Shiri, A.; Eshghi, H.; Khojastehnezhad, A. Appl. Organomet.
[13] Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T.; Arai, M.
Acceleration of Synthetic Organic Reactions Using Supercritical
Water: Noncatalytic Beckmann and Pinacol Rearrangements. J.
[14] Guo, S.; Du, Z.; Zhang, S.; Li, D.; Li, Z.; Deng, Y. Clean
Beckmann Rearrangement of Cyclohexanone Oxime in
Caprolactam-Based Brønsted Acidic Ionic Liquids. Green Chem.
[18] Denton, R. M.; An, J.; Adeniran, B.; Blake, A.; Lewis, W.;
Poulton, A. Catalytic Phosphorus(V)-Mediated Nucleophilic
Substitution Reactions: Development of
a Catalytic Appel
Reaction. J. Org. Chem. 2011, 76, 6749–6767. doi:10.1021/
[19] An, J.; Denton, R. M.; Lambert, T.; Nacsa, E. The Development
of Catalytic Nucleophilic Substitution Reactions: Challenges,
Progress and Future Directions. Org. Biomol. Chem. 2014, 12,
[20] Shipilovskikh, S.; Vaganov, V.; Denisova, E.; Rubtsov, A.;
Malkov, A. Dehydration of Amides to Nitriles under
Conditions of a Catalytic Appel Reaction. Org. Lett. 2018, 20,
[21] Khaksar, S.; Talesh, S. M. Transition Metal-Free Oxidation of
Activated Alcohols to Aldehydes and Ketones in 1,1,1,3,3,3-
Hexafluoro-2-Propanol. J. Fluorine Chem 2012, 140, 95–98. doi:
[22] Wang, L.; Dai, D.; Chen, Q.; He, M. Rapid and Green Synthesis
of Phenols Catalyzed by a Deep Eutectic Mixture Based on
Fluorinated Alcohol in Water. J. Fluorine Chem 2014, 158,
[23] Vekariya, R. H.; Aubꢀe, J. Hexafluoro-2-propanol-Promoted
Intermolecular Friedel–Crafts Acylation Reaction. Org. Lett.
ꢀ
[24] Vukovic, V. D.; Richmond, E.; Wolf, E.; Moran, J. Catalytic
Friedel-Crafts Reactions of Highly Electronically Deactivated
Benzylic Alcohols. Angew. Chem. Int. Ed. 2017, 56, 3085–3089.
[25] Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe,
T. Hexafluoroisopropanol as a Highly Versatile Solvent. Nat.
[26] Maleki, B.; Ashrafi, S. S.; Tayebee, R. Lewis Acid Free Synthesis
of 3,4-Dihydro-1H-Indazolo[1,2-b]Phthalazine-1,6,11(2H,13H)-
Triones Promoted by 1,1,1,3,3,3-Hexafluoro-2-Propanol. RSC
[27] Maleki, B.; Raei, M.; Akbarzadeh, E.; Ghasemnejad-Bosra, H.;
Sedrpoushan, A.; Ashrafi, S. S.; Dehdashti, M. N.
Chemoselective Synthesis of 2,2’-Arylmethylene bis -(3-
Hydroxy-2-cyclohexenes) (“Tetraketones”) in Hexafluoro-2-pro-
panol. Org. Prep. Proced. Int. 2016, 48, 62–71. doi:10.1080/
[15] (a) Bittner, S.; Grinberg, S. J. Chem. Soc., Perkin Trans. 1 1976,
Tian, Y.; Chen, Y.; Liu, W. Synth. Commun. 2012, 42,
Matsumoto, N.; Kuboki, Y.; Mitsukane, H.; Ohta, R.; Kimura,
T.; Murai, K. Chem. Pharm. Bull. 2016, 64, 718–722. doi: