1
[M + Na]+ = 239.0172 g mol−1. H NMR (400 MHz, DMSO-
derivatives. In case of compounds with four vicinal hydroxyl
groups it is difficult to obtain biscyclic carbonates in the reaction
with DMC, even for the reaction carried out at a lower tempera-
ture and in the presence of neutral catalyst. The presented syn-
thetic pathway represents an environmentally friendly approach
to the synthesis of five-membered cyclic ether derivatives under
non-acidic conditions. The biscyclic carbonates containing the
tetrahydrofuran ring can be used in the synthesis of biodegrad-
able non-isocyanate polyurethanes.
d6): 5.38–5.36 (m, 2H, CHOC(O)Obiscyc.), 4.99 (ddd, 1H,
CHcyc., J1 = 5.5 Hz, J2 = 6.4 Hz, J3 = 8.7 Hz), 4.62 (dd, 1H,
CH2cyc., J1 = 8.6 Hz, J2 = 8.6 Hz), 4.44 (dd, 1H, CH2cyc., J1 =
8.5 Hz, J2 = 6.5 Hz), 4.18 (d, 1H, CH2biscyc., J = 12.0 Hz), 3.98
(dd, 1H, CHObiscyc., J1 = 2.2 Hz, J2 = 5.4/Hz), 3.69 (m, 1H,
CH2biscyc.). 13C NMR (400 MHz, DMSO-d6): 144.95
(CvOcyc.), 144.22 (CvOcyc.), 71.41 (CHObiscyc.), 71.10
(CHcyc.), 69.92 (OCH2CHOC(O)Obiscyc.), 64.35 (OCHCHOC
(O)Obiscyc.), 62.11 (CH2biscyc.), 56.63 (CH2cyc.). FTIR (KBr):
2985–2882 (C–H), 1806 (CvOcyc.), 1777 (CvOcyc.),
1193–1178 (C–O), 774 (carbonate ring).
Acknowledgements
This research has been supported by the National Science Centre
of Poland, grant no. N N209 028240.
Synthesis of isosorbide (22)31
In a 100 cm3 three-neck flask equipped with a magnetic stirrer,
condenser and thermometer, 3.15 g (0.0173 mol) of D-sorbitol,
15.58 g (0.1729 mol) of dimethyl carbonate, 20 cm3 of 1,4-
dioxane, and 0.02 g (0.145 mmol) of potassium carbonate were
placed. The reaction was carried out at 90 °C, and the reaction
progress was monitored by TLC. Then, methanol, 1,4-dioxane
and excess of dimethyl carbonate were distilled off and the reac-
tion temperature was increased to 120 °C. At this temperature
intense carbon dioxide liberation was observed. The product was
purified by vacuum distillation (126–127 °C, 1 mmHg). 1.07 g
of 22 (yield 42%) was obtained. Mp. 61–63 °C. 1H NMR
(400 MHz, CDCl3): 4.64 (t, 1H, CHO, J = 4.9 Hz), 4.40–4.33
(m, 2H, CHO + CHOH), 4.29 (dd, 1H, CHOH, J1 = 5.7 Hz, J2 =
11.4 Hz), 3.97 (d, 1H, CH2, J = 10.0 Hz), 3.92–3.82 (m, 2H,
CH2,), 3.54 (dd, 1H, CH2, J1 = 5.8 Hz, J2 = 9.4 Hz), 3.05–2.55
(bs, 2H, OH). 13C NMR (400 MHz, CDCl3): 88.25 (CHO),
81.80 (CHO), 76.65 (CHOH), 75.90 (CH2), 73.64 (CHOH),
72.43 (CH2). FTIR (KBr): 3383 (O–H), 2948–2877 (C–H),
1123–1046 (C–O). Analysis of the isolated product was consist-
ent with that reported in the reference.
Notes and references
1 L. Karas and W. J. Piel, Kirk-Othmer Encyclopedia of Chemical Technol-
ogy, Wiley & Sons Inc., New York, 2004; A. Molnar, K. Felfoldi and
M. Bartok, Tetrahedron, 1981, 37, 2149; N. Meyer and D. Seebach,
Chem. Ber., 1980, 113, 1304; K. P. Herlihy and D. S. Sagatys, J. Chem.
Res., 1996, 2, 501; J. Defaye, A. Gadelle and C. Pedersen, Carbohydr.
Res., 1990, 205, 191; M. Hatano, S. Kamiya, K. Moriyama and
K. Ishihara, Org. Lett., 2011, 13, 430; A. Costa and J. M. Riego, Synth.
Commun., 1987, 17, 1373; A. C. Spivey, A. Maddaford, T. Fekner,
A. J. Redgrave and C. S. Frampton, J. Chem. Soc., Perkin Trans. 1, 2000,
3460; T. Zheng, R. S. Narayan, J. M. Schomaker and B. Borhan, J. Am.
Chem. Soc., 2005, 127, 6946.
2 B. Belleau and Y.-K. Au-Young, J. Am. Chem. Soc., 1963, 85, 64.
3 C. Pavlik, A. Onorato, S. Castro, M. Morton and M. Peczuh, Org. Lett.,
2009, 11, 3722.
4 E. Arceo, P. Marsden, R. G. Bergman and J. A. Ellman, Chem.
Commun., 2009, 3357.
5 D. J. Schreck, M. M. Bradford, N. A. Clinton and P. Aubry, US Pat.
Appl., 20090259057, 2009; J. E. Holladay, J. Hu, Y. Wangand
T. A. Werpy, US Pat. Appl., 20070173651, 2007.
6 K. M. Mathew, S. Ravi, D. Padmanabhan, V. K. P. Unny and
N. Sivaprasad, J. Labelled Compd. Radiopharm., 2006, 49, 333.
7 L. A. Hartmann, US Pat., 3484459, 1969.
8 K. Wilson and J. H. Clark, Pure Appl. Chem., 2000, 72, 1313.
9 K. K. Bhatia, US Pat., 6407266, 2002.
10 H. R. Kricheldorf, J. Macromol. Sci., Rev. Macromol. Chem. Phys., 1997,
37, 599.
11 J. Dale and S. B. Fredriksen, Acta Chem. Scand., 1991, 45, 82.
12 D. B. Pattison, J. Am. Chem. Soc., 1957, 79, 3455.
13 P. Pawlowski and G. Rokicki, Polymer, 2004, 45, 3125.
14 G. Rokicki, P. Rakoczy, P. Parzuchowski and M. Sobiecki, Green Chem.,
2005, 7, 529.
15 M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi and C. D. Pina, Angew.
Chem., Int. Ed., 2007, 46, 4434.
16 G. Rokicki, W. Kuran and B. Pogorzelska-Marciniak, Monatsh. Chem.,
1984, 115, 205; G. Rokicki, Prog. Polym. Sci., 2000, 25, 259.
17 D. J. Darensbourg, A. I. Moncada, W. Choi and J. H. Reibenspies, J. Am.
Chem. Soc., 2008, 130, 6523.
18 F. Sanda, J. Kamatani and T. Endo, Macromolecules, 2001, 34, 1564;
C. F. Allpress and W. Maw, J. Chem. Soc., 1924, 25, 2259.
19 T. Ariga, T. Takata and T. Endo, J. Polym. Sci., Part A: Polym. Chem.,
1993, 31, 581.
Synthesis of tetrahydrofuran
In a 25 cm3 three-neck flask equipped with a magnetic stirrer,
condenser and thermometer, 0.99 g (0.011 mol) of 1,4-butane-
diol, 3.02 g (0.0335 mol) of dimethyl carbonate, and 1.85 g
(0.0342 mol) of sodium alkoxide, and 6 cm3 of 1,4-dioxane
were placed. The reaction was carried out at 90 °C, and the reac-
tion progress was monitored by gas chromatography. Then,
methanol, 1,4-dioxane, excess of dimethyl carbonate, and tetra-
hydrofuran were distilled off under reduced pressure. The distil-
late was analyzed by gas chromatography. Tetrahydrofuran was
obtained in 48% yield.
20 H. Miyaji, S. Fukuoka, H. Hachiya and Y. Inaba, Pat. WO2007/34669
A1, 2007; P. Tundo, S. Memoli, D. Hérault and K. Hill, Green Chem.,
2004, 6, 609; P. Tundo, F. Arico, A. E. Rosamilia and S. Memoli, Green
Chem., 2008, 10, 1182; P. Tundo, F. Arico, A. E. Rosamilia, M. Rigo,
A. Maranzana and G. Tonachini, Pure Appl. Chem., 2009, 81, 1971;
P. Tundo, M. Selva, A. Perosa and S. Memoli, J. Org. Chem., 2002, 67,
1071; A. E. Rosamilia, F. Arico and P. Tundo, J. Org. Chem., 2008, 73,
1559; F. Doro, P. Winnertz, W. Leitner, A. Prokofieva and T. E. Muller,
Green Chem., 2011, 13, 292; K. M. Tomczyk, P. G. Parzuchowski,
J. Kozakiewicz, J. Przybylski and G. Rokicki, Polimery, 2010, 55, 366.
21 T. Ren and D. Liu, Bioorg. Med. Chem. Lett., 1999, 9, 1247.
Conclusions
Diols with vicinal hydroxyl groups easily form five-membered
cyclic carbonates in high yields in the reaction with dimethyl
carbonate in the presence of an alkaline catalyst such as K2CO3.
However, compounds with an additional OH group at the
β-position in relation to the vicinal OH groups after longer reac-
tion times while undergoing the same reaction conditions causes
intramolecularetherification resulting in 3-hydroxytetrahydrofuran
This journal is © The Royal Society of Chemistry 2012
Green Chem., 2012, 14, 1749–1758 | 1757