Mendeleev Commun., 2008, 18, 260–261
But
sponding secondary 4a,b and tertiary 5a–c phosphine chalco-
genides in high yields (Scheme 2).¶
Thus, the reaction of phosphine with styrene 1 is a convenient
approach to the synthesis of secondary and tertiary phosphine
and phosphine chalcogenides with bulky sterically hindered
tert-butylphenyl moieties, possible ligands for the design of the
special metal complex catalysts, as well as intermediates and
coordinating solvents for the preparation of conductive nano-
materials.8
X
H
i or ii
2
P
But
1
4
4
a X = O
b X = Se
But
This work was supported by the Russian Foundation for
Basic Research (grant no. 07-03-00562a).
X
i or ii
3
P
Online Supplementary Materials
But
But
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2008.09.011.
5
5
5
a X = O
b X = S
c X = Se
References
Scheme 2 Reagents and conditions: i, aqueous H O2 (36%), acetone,
1 (a) M. K. Whittlesey, in Organometallic Chemistry, ed. M. Green, The Royal
Society of Chemistry, London, 2000, vol. 28, p. 367; (b) N. T. S. Phan,
M. Van Der Sluys and Ch. W. Jones, Adv. Synth. Catal., 2006, 348, 609;
2
5
0 °C, 2 h; ii, S or Se, toluene, Ar, 60 °C, 2 h.
8
mixture after completion of phosphine feeding. These condi-
(c) J. J. M. de Pater, B.-J. Deelman, C. J. Elsevier and G. van Koten, Adv.
§
tions allow phosphine 3 to be prepared in 69% yield.
Synth. Catal., 2006, 348, 1447; (d) S. E. Gibson and M. Rudd, Adv. Synth.
Catal., 2007, 349, 781.
Note that, under radical conditions (60–65 °C, AIBN, dioxane),
phosphine adds to styrene 1 non-selectively to form a mixture
of corresponding primary, secondary and tertiary phosphines in
low yields.
2
(a) J.-C. Hierso, A. Fihri, R. Amardeil, Ph. Meunier, H. Doucet and
M. Santelli, Tetrahedron, 2005, 61, 9759; (b) M. Moreno-Manas, R. Pleixats
and A. Serra-Muns, Synlett, 2006, 3001; (c) Ya-H. Gan, J.-Ch. Lee and
F.-E. Hong, Polyhedron, 2006, 25, 3555; (d) J.-Ch. Lee, M.-G. Wang and
F.-E. Hong, Eur. J. Inorg. Chem., 2005, 5011; (e) L. L. Hill, L. R. Moore,
R. Huang, R. Craciun, A. J. Vincent, D. A. Dixon, J. Chou, Ch. J. Woltermann
and K. H. Shaughnessy, J. Org. Chem., 2006, 71, 5117; (f) T. Schareina,
A. Zapf, W. Mägerlein, N. Müller and M. Beller, Tetrahedron Lett., 2007,
Phosphines 2, 3 react smoothly with an aqueous solution of
H O , elemental sulfur and selenium in toluene to give corre-
2
2
‡
Preparation of bis[4-(tert-butyl)phenethyl]phosphine 2. A solution of
styrene 1 (8.3 g, 51.8 mmol) in DMSO (5 ml) was added dropwise for
h to a suspension of KOH (10 g, 178.6 mmol), DMSO (40 ml) and
water (1.5 ml), blown through argon and saturated with phosphine, at
0 °C under stirring and continuous bubbling of phosphine. The reaction
4
8, 1087; (g) Y. Yamanoi, J. Org. Chem., 2005, 70, 9607; (h) Y. Yamanoi,
T. Taira, J.-I. Sato, I. Nakamula and H. Nishihara, Org. Lett., 2007, 9, 4543;
i) D. I. McIsaac, S. J. Geier, Ch. M. Vogels, A. Decken and S. A. Westcott,
2
(
Inorg. Chim. Acta., 2006, 359, 2771; (j) H. R. Chobanian, P. Liu,
M. D. Chioda, Y. Guo and L. S. Lin, Tetrahedron Lett., 2007, 48, 1213;
7
mixture was additionally heated (70 °C) for 1 h in the flow of phosphine,
and then the phosphine feeding was stopped. The mixture was blown
through argon, cooled, diluted with water and extracted with benzene. The
benzene extract was washed with water, dried over K CO , benzene was
(
k) A. Ochida, H. Ito and M. Sawamura, J. Am. Chem. Soc., 2006, 128,
1
2
6486; (l) S. Ogoshi, M. Ueta, M. Oka and H. Kurosawa, Chem. Commun.,
004, 2732; (m) K. Blann, A. Bollmann, J. T. Dixon, F. M. Hess, E. Killian,
2
3
H. Maumela, D. H. Morgan, A. Neveling, S. Otto and M. J. Overett, Chem.
Commun., 2005, 620; (n) W. Liu, J. M. Malinoski and M. Brookhart,
Organometallics, 2002, 21, 2836; (o) M. Jimenez-Tenorio, M. C. Puerta,
I. Salcedo, P. Valerga, S. I. Costa, L. C. Silva and P. T. Gomes, Organo-
metallics, 2004, 23, 3139.
distilled, and the residue was fractionated in a vacuum to recover 2.1 g
of styrene 1 (75% conversion). The residue was washed with hexane
(
10 ml) and dried in a vacuum to furnish 6 g (87%, calculated with
conversion 1) of phosphine 2.
The H, C, P and 77Se NMR spectra were recorded on a Bruker DPX 400
1
13 31
3 (a) M. O. Shulyupin, M. A. Kazankova and I. P. Beletskaya, Org. Lett., 2002,
4, 761; (b) M. Tanaka, in Topics in Current Chemistry, ed. J.-P. Majoral,
Springer, Berlin, Heidelberg, 2003, vol. 229, p. 26; (c) R. Engel and
spectrometer (400.13, 100.61, 161.98 and 76.31 MHz, respectively).
1
For 2: colourless powder, mp 138–139 °C (hexane). H NMR (C D )
6
6
nd
d: 1.35 (s, 18H, Me), 1.71–1.79 and 1.83–1.91 (m, 4H, CH P), 2.74–2.81
J. I. Cohen, Synthesis of Carbon–Phosphorus Bonds, 2 edn., CRC Press,
2
1
3
(
m, 4H, CH Ar), 3.27 (dq, 1H, J 195.3 Hz, J 7 Hz), 7.15–7.17 and
London, 2004; (d) F. Alonso, I. P. Beletskaya and M. Yus, Chem. Rev.,
2004, 104, 3079; (e) S. N. Arbuzova, N. K. Gusarova and B. A. Trofimov,
Arkivoc, 2006, v, 12; (f) D. Enders, A. Saint-Dizier, M.-I. Lannou and
A. Lenzen, Eur. J. Org. Chem., 2006, 29.
4 B. A. Trofimov, L. Brandsma, S. N. Arbuzova, S. F. Malysheva and
N. K. Gusarova, Tetrahedron Lett., 1994, 35, 7647.
5 N. K. Gusarova, N. I. Ivanova, M. V. Bogdanova, L. M. Sinegovskaya,
A. V. Gusarov and B. A. Trofimov, Phosphorus Sulfur Silicon Relat.
Elem., 2005, 180, 1749.
2
PH
HH
1
3
1
7
3
1
.36–7.38 (m, 8H, Ar). C NMR (C D ) d: 22.31 (d, CH P, J 11.9 Hz),
6 6 2 PC
1
1.08 (Me), 33.90 (CMe), 34.03 (d, CH Ar, J 10.7 Hz), 125.07 (Co-Ar),
27.80 (Cm-Ar), 139.35 (d, C , J 8.0 Hz), 148.32 (Cp-Ar). 31P NMR
CDCl ) d: –68.67 (d, J 195.9 Hz). Found (%): C, 81.47; H, 10.03;
2
PC
3
i-Ar
PC
1
(
3 PH
P, 8.81. Calc. for C H P (%): C, 81.31; H, 9.95; P, 8.74.
2
4
35
§
Preparation of tris[4-(tert-butyl)phenethyl]phosphine 3. A solution of
styrene 1 (5.5 g, 34.3 mmol) in DMSO (6.5 ml) was added dropwise for
h 40 min to a suspension of KOH (20 g, 357.1 mmol), DMSO (60 ml)
1
6
(a) D. Semenzin, G. Etemad-Moghadam, D. Albouy, O. Diallo and M. Koenig,
and water (1.5 ml), blown through argon and saturated with phosphine,
at 70 °C under stirring and continuous bubbling of the phosphine. The
phosphine feeding was stopped, the mixture was blown through argon,
and a solution of styrene 1 (2.8 g, 17.5 mmol) was added. The reaction
mixture was heated (120 °C) and stirred for 1 h, then cooled, diluted
with water, and extracted with toluene. The toluene extract was washed
with water, dried over K CO , the toluene was removed, the residue was
J. Org. Chem., 1997, 62, 2414; (b) T. Bunlaksananusorn and P. Knochel,
Tetrahedron Lett., 2002, 43, 5817.
7
8
T. Fujita, S. Watanabe, K. Suga and H. Nakayama, Synthesis, 1979, 310.
(a) The Chemistry of Nanomaterials, eds. C. N. R. Rao, A. Müller and
A. K. Cheetham, Wiley-VCH, New York, 2004, vol. 2; (b) A. Sashchiuk,
L. Amirav, M. Bashouti, M. Krueger, U. Sivan and E. Lifshitz, Nano Lett.,
2004, 4, 159; (c) S. P. Gubin, N. A. Kataeva and G. B. Khomutov, Izv.
Akad. Nauk, Ser. Khim., 2005, 811 (Russ. Chem. Bull., Int. Ed., 2005, 54,
827); (d) J. E. Halpert, V. J. Porter, J. P. Zimmer and M. G. Bawendi, J.
Am. Chem. Soc., 2006, 128, 12590; (e) A. H. Latham, M. J. Wilson,
P. Schiffer and M. E. Williams, J. Am. Chem. Soc., 2006, 128, 12632.
2
3
washed with hexane (10 ml) and dried in a vacuum to afford 6.1 g (69%)
1
of phosphine 3, colourless powder, mp 114–116 °C (hexane). H NMR
(
C D ) d: 1.37 (s, 27H, Me), 1.75–1.79 (m, 6H, CH P), 2.08–2.86 (m,
6
6
2
3
1
6
2
3
1
H, CH Ar), 7.20–7.26 and 7.39–7.40 (m, 12H, Ar). C NMR (C D ) d:
2
6
6
1
2
9.55 (d, CH P, J 14.5 Hz), 31.40 (Me), 32.14 (d, CH Ar, J 14.5 Hz),
4.25 (CMe), 127.64 (Co-Ar), 127.87 (Cm-Ar), 140.24 (d, Ci-Ar, J 9.5 Hz),
48.63 (Cp-Ar). P NMR (CDCl ) d: –26.57. Found (%): C, 83.96; H, 9.83;
2
PC
2
PC
Received: 4th April 2008; Com. 08/3114
3
PC
3
1
¶
For characteristics of compounds 4a,b and 5a–c, see Online Supple-
3
P, 5.81. Calc. for C H P (%): C, 84.00; H, 9.99; P, 6.02.
mentary Materials.
3
6
51
–
261 –