Advanced Synthesis & Catalysis
10.1002/adsc.201900482
generated by the radical combination between CBr
3
[2] a) B. Yu, J.-N. Xie, C.-L. Zhong, W. Li, L.-N. He, ACS
Catal. 2015, 5, 3940–3944. b) M. Börjesson, T. Moragas, D.
Gallego, R. Martin, ACS Catal. 2016, 6, 6739–6749. c) S. E.
Payer, H. Pollak, S. M. Glueck, K. Faber, ACS Catal. 2018,
8, 2438–2442. d) T. Mita, S. Ishii, Y. Higuchi, Y. Sato, Org.
Lett. 2018, 20, 7603–7606. e) D. J. Charboneau, G. W.
Brudvig, N. Hazari, H. M. C. Lant, A. K. Saydjari, ACS
Catal. 2019, 9, 3228–3241. f) C. Ma, C.-Q. Zhao, X.-T. Xu,
Z.-M. Li, X.-Y. Wang, K. Zhang, T.-S. Mei, Org. Lett. 2019,
21, 2464-2467. g) H. Jiang, Y. Zhang, W. Xiong, J. Cen, L.
Wang, R. Cheng, C. Qi, W. Wu, Org. Lett. 2019, 21, 345–
349.
[3] a) T. D. Thangadurai, C. J. Lee, S. H. Jeong, S. Yoon,
Y. G. Seo, Y. I. Lee, Microchem. J. 2013, 106, 27–33. b) M.
Jeleń, K. Pluta, K. Suwińska, B. Morak-Młodawska, M.
Latocha, A. Shkurenko, J. Mol. Struct. 2015, 1099, 10–15.
c) J. Chen, Y. Song, D. Bojadzic, A. Tamayo-Garcia, A. M.
Landin, B. B. Blomberg, P. Buchwald, J. Med. Chem. 2017,
60, 8906–8922. d) T. Y. Zhang, Z. K. Yu, X. J. Jin, M. Y.
Li, L. P. Sun, C. J. Zheng, H. R. Piao, Bioorganic Med.
Chem. Lett. 2018, 28, 1657–1662. e) D. T. Tshitenge, D.
Feineis, V. Mudogo, M. Kaiser, R. Brun, E. J. Seo, T.
Efferth, G. Bringmann, J. Nat. Prod. 2018, 81, 918–933.
radical and intermediate C. The proton transfer
process afforded intermediate E, and ligand exchange
of which leads the regeneration of intermediate A to
continue the catalytic cycle along with intermediate F,
which upon methanolysis gave the desired product 2a.
In summary, we have developed a simple copper
catalyzed regioselective C4 carboxylation of 1-
naphthylamine and other aromatic and heteroaromatic
substrates, with CBr and alcohol using picolinamide
4
and analogous amide as directing group. The
carboxylation showed wide substrate scope, good
functional group tolerance and easy to scale up.
Deprotection of directing group and functionalization
of TSQ, fluorescent probe for Zn(II), and sequential C-
H functionalization of 1-naphthayl amide moiety to
poly substituted naphthalene showcased the
applicability of our developed methodology. Control
experiments, with trapping of radicals intermediates
revealed that reaction proceeds through a single
electron transfer (SET) pathway.
[
4] For selected examples naphthalene derivatives C−H
Experimental section
functionalization a) D. R. Stuart, M. Bertrand-Laperle, K.
M. N. Burgess, K. Fagnou, J. Am. Chem. Soc.2008, 130,
16474−16475. b) D. Lee, S. Chang, Chem. - Eur. J. 2015,
21, 5364−5368. c) C. Wang, H. Chen, Z. Wang, J. Chen, .
Huang, Angew. Chem., Int. Ed. 2012, 51, 7242−7245. d) J.
Roane, O. Daugulis, Org. Lett. 2013, 15, 5842−5845. e) Q.
Li, S. Y. Zhang, G. He, Z Ai, W. A. Nack, ,G. Chen, Org.
Lett. 2014, 16, 1764−1767. f) S. Shi, C. Kuang, J. Org.
Chem. 2014, 79, 6105−6112. g) M. Kondrashov, S. Raman,
O. F. Wendt, Chem. Commun. 2015, 51, 911−913. h) F. M.
Moghaddam, G. Tavakoli, B. Saeednia, P. Langer, B. J.
Jafari, J. Org. Chem. 2016, 81, 3868−3876.
A mixture of Amide (1a) (49.6 mg, 0.2 mmol), CBr
199 mg, 0.6 mmol, 3 eqv], Cu(OTf) (14.5 mg, 20
mole%), K CO (55.3 mg, 0.4 mmol) and DMAP (4.9
4
(
2
2
3
mg, 20 mole%) were taken in a carousel screw cap
reaction tube equipped with a cross shape stirring bar.
The reaction tube was evacuated and refill with
nitrogen, 1 mL dry methanol was added over it and
stirred at 85 C for 12-18 h. Reaction was monitored
by TLC. After completion the reaction, mixture was
cooled to room temperature and filtered through a plug
of celite, the filtrate was concentrated, and evaporated
to dryness in rotary evaporator. The crude residue was
purified by Flash column chromatography (Ethyl
acetate: Hexane 5:95) to isolate methyl 4-
[5] For selected examples on the functionalization of 1-
naphthylamide scaffolds a) L. Huang, Q. Li, C. Wang, C. Qi,
J. Org. Chem. 2013, 78, 3030–3038. b) R. Odani, K. Hirano,
T. Satoh, M. Miura, J. Org. Chem. 2013, 78, 11045–11052.
(
picolinamido)-1-naphthoate (43 mg, 2a) in 71% yield. c) L. Huang, X. Sun, Q. Li, C. Qi, J. Org. Chem. 2014, 79,
720–6725. d) J. Lan, H. Xie, X. Lu, Y. Deng, H. Jiang, W.
6
Zeng, Org. Lett. 2017, 19, 4279–4282. e). H. Song, X. Liu,
C. Wang, J. Qiao, W. Chu, Z. Sun, Asian J. Org. Chem.
Acknowledgment
2
017, 6, 1693–1698. f) S. Roy, S. Pradhan, T.
We are thankful to the SERB, DST, India
Punniyamurthy, Chem. Commun. 2018, 3–6. g) G. You, K.
Wang, X. Wang, G. Wang, J. Sun, G. Duan, C. Xia, Org.
Lett. 2018, 20, 4005–4009. h) L. Huang, Q. Li, C. Wang, C.
Qi, J. Org. Chem. 2013, 78, 3030–3038. i) S. Pradhan, P. B.
De, T. Punniyamurthy, J. Org. Chem. 2017, 82, 4883–4890.
j) L. Wang, M. Yang, X. Liu, H. Song, L. Han, W. Chu, Z.
Sun, Appl. Organomet. Chem. 2016, 30, 680–683.
(
EMR/2016/002427), for financial support for this
work. The authors also acknowledge AESD&CIF of
CSIR-CSMCRI for constant analytical support. TS,
CS, and HS thanks to DST, CSIR, and UGC for their
fellow-ship
respectively.
CSIR-CSMCRI
Communication No. 051/2019
[
6] for papers on C8 functionalizations of 1-
naphthylamide derivatives see a) S. Rej, N. Chatani, ACS
Catal. 2018, 8, 6699-6706; b) X. Li, X. Gong, M. Zhao, G.
Song, J. Deng, X. Li, Org. Lett, 2011, 13, 5808-5811. c) R.
Shang, L. Ilies, E. Nakamura, J. Am. Chem. Soc. 2015, 137,
References
[
1] Recent reviews a) L. McMurray, F. O’Hara, M. J.
Gaunt, Chem. Soc. Rev. 2011, 40, 1885–1898. b) J.
Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. Int.
Ed. 2012, 51, 8960–9009; c) T. Gensch, M. N. Hopkinson,
F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016, 45,
7
660-7663. d) Z. Li, S. Sun, H. Qiao, F. Yang, Y. Zhu, J.
Kang, Y. Wu, Y. Wu, Org. Lett. 2016, 18, 4594-4597 and
references cited therein. For C-2 functionalization e) O.
Dauglis, V. G. Zaitsav, Angew. Chem. Int. Ed. 2005, 44,
2
2
900–2936. d) J. Liu, G. Chen, Z. Tan, Adv. Synth. Catal.
016, 358, 1174–119.
4
046- 4048.
5
This article is protected by copyright. All rights reserved.