J. CHEM. RESEARCH (S), 1998 583
m/z (70 eV) 133 (M OAc, 1.2), 98 (M 133 Cl, 4.2%); 2d: ꢁH
(CDCl3), 1.05 (6 H, d, J 6 Hz), 2.01 (3 H, s), 3.4±3.8 (5 H, com-
plex), 4.9 (1 H, m); ꢁC (CDCl3), 20.58, 21.64, 42.62, 65.78, 71.68,
72.13, 169.86; m/z (70 eV) 159 (M Cl, 1.8), 135 (M OAc, 3.9%);
2e: ꢁH (CDCl3) (3 H, s), 3.6±3.8 (4 H, m), 5.1±5.4 (1 H, m); ꢁC
(CDCl3), 20.57, 40.80, 66.12, 169.09, m/z (70 eV) 101 (M 2Cl,
18.9%); 2f: (trans-1-chloro-2-acetoxycyclohexane) ꢁH (CDCl3), 1±1.5
(4 H, m), 1.5±1.8 (4 H, m), 2.01 (3 H, s), 3.65±4.1 (1 H, m), 4.6±4.9
(1 H, m); ꢁC (CDCl3), 23.01, 25.91, 26.54, 32.74, 36.8, 62.69, 77.82,
172.1; m/z (70 eV) 141 (M Cl, 10.7%), 117 (M OAc, 1.9%); 2h:
(trans-1-chloro-2-acetoxycyclooctane) ꢁH (CDCl3) 1.4±1.9 (8 H,
complex), 2.1 (3 H, s), 1.96±2.2 (4 H, m), 4.16 (1 H, m), 5.1 (1 H,
m); ꢁC (CDCl3), 19.8, 22.2, 23.9, 24.2, 24.3, 29.8, 30.3, 63.01, 77.4,
168.8; m/z (70 eV) 169 (M Cl, 1.8%), 145 (M OAc, 1.8%); 2g:
(trans-1-chloro-2-acetoxycyclopentane) ꢁH (CDCl3), 1±1.5 (2 H, m),
1.5±1.8 (4 H, m), 2.05 (3 H, s), 3.6±4.05 (1 H, m), 4.5±4.85 (1 H,
m), m/z (70 eV) 127 (M Cl, 8.5%), 103 (M OAc, 1.4%).
2 J. E. Backwell, M. W. Young and K. B. Sharpless, Tetrahedron
Lett., 1977, 40, 3523.
3 (a) K. B. Sharpless, A. Y. Teranishi and J. E. Backvall, J. Am.
Chem. Soc., 1977, 99, 3120; (b) P. Gros, P. Le Perchec and J. P.
Senet, J. Org. Chem., 1994, 59, 4925.
4 I. Shibata, A. Baba and H. Matsuda, Tetrahedron Lett., 1986,
27, 3021.
5 J. Igbal, Khan M. Amin and R. R. Srivastav, Tetrahedron Lett.,
1988, 29, 4985.
6 (a) M. Shimizu, A. Yoshida and T. Fujisawa, Synlett, 1992, 204;
(b) J. J. Eisch, Z. Liu, X. Ma and G. Zhen, J. Org. Chem., 1992,
57, 5140.
7 (a) N. Iranpoor and P. Salehi, Tetrahedron, 1995, 51, 909;
(b) N. Iranpoor and F. Kazemi, Synthesis, 1996, 821;
(c) N. Iranpoor, T. Tarrian and Z. Movahedi, Synthesis, 1996,
1473; (d) N. Iranpoor and F. Kazemi, Tetrahedron, 1997, 53,
11377.
8 The stereochemistry of the cyclic products were determined
according to the following procedures: (a) the corresponding
trans-halohydrins which are formed as intermediates from the
reaction of epoxides with TiCl4 in the absence of imidazole
were separated and their physical data were compared with the
data reported in the literature.9 (b) The acetate or benzoate
derivatives of the obtained cyclic chlorohydrins were also
prepared and their physical data were compared with those
reported in the literature.10 (c) The spectral data obtained from
the acetate derivative of halohydrins in procedure (b) were
found to be identical with those obtained with our method.
9 (a) M. Mousseron and F. Winternitz, Bull. Soc. Chim. Fr., 1946,
604; (b) S. J. Lapporte and L. L. Ferstandig, J. Org. Chem.,
1961, 26, 3681.
We are thankful to the Shiraz University Research
Council for partial support of this work. The assistance of
Mr. N. Maleki for running the NMR spectra and Dr. A. A.
Jarahpoor for running mass spectra is also acknowledged.
Received, 5th January 1998; Accepted, 21st May 1998
Paper E/8/00145F
References and notes
1 (a) For a review see C. Bonini and G. Righi, Synthesis, 1994,
225; (b) J. G. Smith, Synthesis, 1984, 629; (c) N. Iranpoor,
F. Kazemi and P. Salehi, Synth. Commun., 1997, 27, 1247 and
references therein.
10 (a) L. N. Owen and P. N. Smith, J. Chem. Soc., 1952, 4026;
(b) Y. Ganoni, Bull. Soc. Chim. Fr., 1959, 701; (c) J. G.
Traynham and J. Schneller, J. Am. Chem. Soc., 1965, 87, 2398.