ChemComm
Communication
Biol., 2010, 14, 115; (d) Y. Sime ´o , W. Kroutil and K. Faber,
in Biocatalysis in the Pharmaceutical and Biotechnology Industries,
ed. R. N. Patel, CRC Press, 2007, p. 27.
Recent bibliography: (a) I. Hussain and J. E. B ¨a ckvall, in Enzyme
Catalysis in Organic Synthesis, ed. K. Drauz, H. Gr o¨ ger and O. May,
Wiley-VCH, 3rd edn, 2012, p. 1777; (b) H. Pellisier, Tetrahedron, 2011,
2
6
7, 3769; (c) Y.-W. Kim, J.-W. Park and M.-J. Kim, ChemCatChem,
Scheme 3 Synthesis of (1S,2S)-3k through a DKR process with a transaminase
2011, 3, 271.
using isopropylamine as an amino donor.
3 Recent examples: (a) M. Egi, K. Sugiyama, M. Saneto, R. Hanada,
K. Kato and S. Akai, Angew. Chem., Int. Ed., 2013, 52, 3654;
(
b) C. Kim, J. Lee, J. Cho, Y. Oh, Y. K. Choi, E. Choi, J. Park and
M.-J. Kim, J. Org. Chem., 2013, 78, 2571.
Next, it was envisaged that the employment of more con-
strained derivatives could improve the diastereoselectivity of
the process while maintaining the excellent ee value. Therefore,
two cyclic compounds (1j and 1k) were tried as possible amino
acceptors for these TAs (Tables S14 and S15 in ESI†).
4
Examples employing alcohol dehydrogenases: (a) A. Cuetos, A. Rioz-
Mart ´ı nez, F. R. Bisogno, B. Grischek, I. Lavandera, G. de Gonzalo,
W. Kroutil and V. Gotor, Adv. Synth. Catal., 2012, 354, 1749;
(
b) D. Kalaitzakis and I. Smonou, Eur. J. Org. Chem., 2012, 43;
(c) G. A. Applegate, R. W. Cheloha, D. L. Nelson and D. B. Berkowitz,
Chem. Commun., 2011, 47, 2420. Using Baeyer–Villiger monooxy-
genases: (d) A. Rioz-Mart ´ı nez, A. Cuetos, C. Rodr ´ı guez, G. de Gonzalo,
I. Lavandera, M. W. Fraaije and V. Gotor, Angew. Chem., Int. Ed., 2011,
5
0, 8387; (e) C. Rodr ´ı guez, G. de Gonzalo, A. Rioz-Mart ´ı nez, D. E. Torres
Pazmi n˜ o, M. W. Fraaije and V. Gotor, Org. Biomol. Chem., 2010, 8, 1121.
For 1j generally lower conversions (o40%) were observed, but
several (S)-selective biocatalysts could afford preferentially the anti-
0
(
2R,1 S) isomer, while (R)-TAs did not show good selectivities. Better
results were obtained for keto ester 1k, finding that ATA-113 and
TA-P1-G05 were able to produce anti-(1S,2S)-3k with very high
conversions, ee (>99%) and de (94–96%). Thus, a 50 mg-scale
reaction was achieved using TA-P1-G05 obtaining by simple
acid–base extraction the chiral amino ester (1S,2S)-3k with a
5 Recent revisions: (a) M. H ¨o hne and U. T. Bornscheuer, in Enzyme
Catalysis in Organic Synthesis, ed. K. Drauz, H. Gr o¨ ger and O. May,
Wiley-VCH, 3rd edn, 2012, p. 779; (b) M. S. Malik, E.-S. Park and
J.-S. Shin, Appl. Microbiol. Biotechnol., 2012, 94, 1163; (c) S. Mathew
and H. Yun, ACS Catal., 2012, 2, 993; (d) D. Koszelewski, K. Tauber,
K. Faber and W. Kroutil, Trends Biotechnol., 2010, 28, 324.
6
D. Koszelewski, D. Clay, K. Faber and W. Kroutil, J. Mol. Catal. B:
Enzym., 2009, 60, 191.
1
7
good yield and excellent ee and de (Scheme 3).
Herein we show our first results on the application of a set
of commercially available o-TAs to provide several a-alkylated
b-amino esters using a dynamic protocol. These highly inter-
esting targets are difficult to synthesize by other methodologies
and in most cases the synthetic routes involve several steps
or the employment of harsh conditions. Thus, a series of acyclic
7 E. Juaristi, in Enantioselective Synthesis of b-Amino Acids, ed.
E. Juaristi and V. A. Soloshonok, Wiley & Sons, 2nd edn, 2005, p. 1.
8
(a) D. Seebach and J. Gardiner, Acc. Chem. Res., 2008, 41, 1366;
b) M. A. Gelman and S. H. Gellman, in Enantioselective Synthesis of
b-Amino Acids, ed. E. Juaristi and V. A. Soloshonok, Wiley & Sons,
nd edn, 2005, p. 527.
P. A. Magriotis, Angew. Chem., Int. Ed., 2001, 40, 4377.
(
2
9
10 G. Cardillo and C. Tomasini, Chem. Soc. Rev., 1996, 25, 117.
a-alkyl-b-keto esters were synthesized and used as substrates 11 (a) T. Kano, Y. Yamaguchi and K. Maruoka, Chem.–Eur. J., 2009, 15, 6678;
(
2
b) M. Periasamy, S. Suresh and S. S. Ganesan, Tetrahedron: Asymmetry,
006, 17, 1323; (c) A. J. McNeil, G. E. S. Toombes, S. M. Gruner,
for these enzymes, finding that although excellent conversions
and ee were achieved for many of them, diastereoselectivities
remained modest with few exceptions. As an additional extension,
two constrained cyclic derivatives were employed to study their
effect in the transamination reactions. Gratifyingly, racemic ethyl
E. Lobkovsky, D. B. Collum, S. V. Chandramouli, B. J. Vanasse and T. A.
Ayers, J. Am. Chem. Soc., 2004, 126, 16559; (d) C. Cimarelli and
G. Palmieri, J. Org. Chem., 1996, 61, 5557; (e) G. Cardillo, A. Tolomelli
and C. Tomasini, J. Org. Chem., 1996, 61, 8651; ( f ) S. Kobayashi,
J. Kobayashi, H. Ishiani and M. Ueno, Chem.–Eur. J., 2002, 8, 4185;
(g) J.-P. G. Seerden, M. M. M. Kuypers and H. W. Scheeren, Tetrahedron:
Asymmetry, 1995, 6, 1441; (h) S. G. Davies and I. A. S. Walters, J. Chem.
Soc., Perkin Trans. 1, 1994, 1129; (i) S. G. Davies, O. Ichihara and I. A.
S. Walters, J. Chem. Soc., Perkin Trans. 1, 1994, 1141.
2 However, o-TAs have proven to be excellent catalysts applied to the
synthesis of enantiopure a-unsubstituted b-amino acid derivatives
through amination of the corresponding carbonylic precursors, see:
J. Rudat, B. R. Brucher and C. Syldatk, AMB Express, 2012, 2, 11.
3 C. A. Brandt, A. C. M. P. da Silva, C. G. Pancote, C. L. Brito and
M. A. B. da Silveira, Synthesis, 2004, 1557.
4 C. Bartoli, C. Cimarelli, E. Marcantoni, G. Palmieri and M. Petrini,
J. Org. Chem., 1994, 59, 5328.
5 K. E. Cassimjee, C. Branneby, V. Abedi, A. Wells and P. Berglund,
Chem. Commun., 2010, 46, 5569.
6 (a) F. G. Mutti, C. S. Fuchs, D. Pressnitz, J. H. Sattler and W. Kroutil,
Adv. Synth. Catal., 2011, 353, 3227; (b) M. H ¨o hne, S. Sch ¨a tzle,
H. Jochens, K. Robins and U. T. Bornscheuer, Nat. Chem. Biol., 2010,
6, 807; (c) C. K. Savile, J. M. Janey, E. C. Mundorff, J. C. Moore, S. Tam,
W. R. Jarvis, J. C. Colbeck, A. Krebber, F. J. Fleitz, J. Brands,
P. N. Devine, G. W. Huisman and G. J. Hughes, Science, 2010, 329, 305.
7 2-Aminocyclopentanecarboxylate derivatives are useful monomers
to synthesize constrained peptides, see: S. H. Choi, I. A. Guzei,
L. C. Spencer and S. H. Gellman, J. Am. Chem. Soc., 2009, 131, 2917.
2
-oxocyclopentanecarboxylate showed excellent ee and de under
our dynamic conditions, so the corresponding amino ester anti-
1S,2S)-3k could be synthesized at a higher scale. With these
(
preliminary results in hand, the application of these biocatalysts
over new constrained substrates will be preferred, and due to the
development of highly efficient tools in the Molecular Biology
1
16b,18
field,
the design of novel transaminases that could provide
1
1
1
1
specifically each diastereoisomer in enantiomerically pure form
seems to be highly feasible in the near future.
A.C. thanks the Principado de Asturias for his predoctoral
fellowship Severo Ochoa. I. L. thanks the Spanish MICINN for
personal funding (Ram o´ n y Cajal Program). Financial support
from MICINN (Project MICINN-12-CTQ2011-24237) is gratefully
acknowledged.
Notes and references
1
1
(a) E. Garc ´ı a-Urdiales, I. Lavandera and V. Gotor, in Enzyme Catalysis
in Organic Synthesis, ed. K. Drauz, H. Gr o¨ ger and O. May, Wiley-VCH,
3
rd edn, 2012, p. 43; (b) E. Garc ´ı a-Urdiales, I. Alfonso and V. Gotor, 18 D. Koszelewski, M. G o¨ ritzer, D. Clay, B. Seisser and W. Kroutil,
Chem. Rev., 2011, 111, PR110; (c) N. J. Turner, Curr. Opin. Chem. ChemCatChem, 2010, 2, 73.
1
0690 Chem. Commun., 2013, 49, 10688--10690
This journal is c The Royal Society of Chemistry 2013