Chemistry Letters 2002
369
A. Heydari and J. Ipaktschi, Chem. Ber., 127, 1761 (1994).
A. Heydari, P. Fatemi, and A.-A. Alizadeh, Tetrahedron Lett.,
39, 3049 (1998).
I. R. Iran as a National Research project under the number 984.
6
7
References and Notes
1
2
R. Bloch, Chem. Rev., 98, 1407 (1998); D. Enders, and U.
Reinhold, Tetrahedron Asymmetry., 8, 1895 (1997).
L. Niimi, K-I. Serita, S. Hiraoka, and T. Yokozawa,
Tetrahedron Lett., 41, 7075 (2000); S. Kobayashi, R.
Akiyama, M. Kawamura, and H. Ishitani, Chemistry Lett.,
1997, 1039.
8
9
A. Heydari, A. Karimian, and J. Ipaktschi, Tetrahedron Lett.,
39, 5773 (1998).
A. Heydari, H. Larijani, J. Emami, and B. Karami,
Tetrahedron Lett., 41, 2471 (2000).
10A. Heydari, M. Zarei, R. Alijanianzadeh, and H. Tavakol,
Tetrahedron Lett., 42, 3629 (2001).
3
4
5
M. Arend, B. Westermann, and N. Risch, Angew. Chem. Int.
Ed., 37, 1047 (1998).
M. Tramontini and L. Angiolini, Mannich-Bases, Chemistry
and uses, CRC, Boca Raton, FL (1994).
11 A typical experimental procedure, to a mixture of aldehyde
(2 mmol) in 5 M LPDE (4 ml) was added N; N-dimethyl-
hydrazine (2.2 mmol) at room temperature. The mixture was
stirred for 15 min. and trimethylsilylcyanide (2.2 mmol) was
added. The mixture was stirred for 15 min then water was
added and the product was extracted with CH2Cl2. The
organic phase was collected, dried (Na2SO4) and evaporated
to afford the crude product. The product was purified by flash
chromatography (hexan-ethyl acetate). 1H-NMR, 13C-NMR,
IR and MS spectra were entirely consistent with the assigned
structures. selected data as follow: 4a (R1 ¼ Methyl) 1H-
In recent years, lithium perchlorate in diethyl ether (LPDE)
has gained importance as a versatile reaction medium for
effecting various organic transformations such as, Diels–
Alder reactions: P. A. Grieco, J. J. Nunes, and M. D. Gaul, J.
Am. Chem. Soc., 112, 4595 (1990), 1,3-Claisen rearrange-
ments: P. A. Grieco, J. D. Clark, and C. T. Jagoe, J. Am. Chem.
Soc., 113, 5489 (1991), hetero-Diels-Alder reactions: P. A.
Grieco, J. D. Clark, C. T. Jagoe, J. Am. Chem. Soc., 113, 5488
(1991), K. K. Balasubramanian and N. Palani, Tetrahedron
Lett., 36, 9527 (1995), W. H. Pearson and J. M. Scvheryantz,
J. Org. Chem., 57, 2986 (1992), Chelation controlled addition
of allylstannanes to aldehydes: K. J. Henry, P. A. Grieco, and
C. T. Jagoe, Tetrahedron Lett., 33, 1817 (1992), J. Ipaktschi,
A. Heydari, and H-O. Kalinowski, Chem. Ber., 127, 90 5
(1994), [2 þ 2] Cycloadditions: W. Srisiri, A. B. Padias, and
H. K. Hall, Jr., J. Org. Chem., 58, 4185 (1993), Selective
carbonyl protection: V. Geetha Saraswathy and S. Sankara-
man, J. Org. Chem., 59, 4665 (1994), Selective deoxygena-
tion of allylic alcohols and acetates: D. J. Wustrow, W. J.
Smith, III, and L. D. Wise, Tetrahedron Lett., 35, 61 (1994),
Ene reactions: W. J. Kinat, J. Chem. Research(s), 1994, 486;
Ionization of C7 methoxy group in Rapamycin: J. Luengo, A.
K. Beck, and D. A. Holt, Tetrahedron Lett., 36, 7823 (1995),
[2 þ 3] addition of p-benzoquinone with alkenes: J. Asano, Y.
Ryu, K. Chiba, andM. Tada, J. Chem. Research(s), 1995, 124;
Selective rearrangement of epoxides: R. Sudha, K. Maloia
Narashimhan, V. Geetha Saraswathy, and S. Sankararaman,
J. Org. Chem., 61, 1877 (1996), Cationic [5 þ 2] cycloaddi-
tion reactions: J. L. Collins, P. A. Grieco, and J. K. Walker,
Tetrahedron Lett., 39, 9287 (1998), Tetrahydropyranylation
of alcohols: B. S. Babu and K. K. Balasubramanian,
Tetrahedron Lett., 39, 9287 (1998), Baylis-Hilman reaction:
M. Kawamura, and S. Kobayashi, Tetrahedron Lett., 40, 1539
(1999).
NMR (90MHz, CDCl Þ: ꢁ ¼ 3:8 (m, 1H, H1), 3.1 (bs, 1H,
3
NH), 2.6 (s, 6H, NCH3), 1.4 (d, JH-H ¼ 9 Hz, 3H, CH3); 13C-
NMR (22.5 MHz, CDCl3): ꢁ ¼ 121:26 (CN), 48.17 (NCH3),
45.64 (CH), 17.54(CH3); 4b (R1 ¼ Ethyl) 1H-NMR
2
(90MHz, CDCl 3): ꢁ ¼ 3:7 (t, JH-H ¼ 9 Hz, 1H, H1), 3.0
(bs, 1H, NH), 2.6 (s, 6H, NCH3), 1.8 (q, JH-H ¼ 9 Hz, 2H), 1.1
(t, JH-H ¼ 9 Hz, 3H); 13C-NMR (22.5 MHz, CDCl3): ꢁ ¼
120:7 (CN), 52.5 (CH), 48.3 (NCH3), 25.0(CH 2), 9.8 (CH3);
1
1
4c (R ¼ i-Propyl): H-NMR (90MHz, CDCl 3) ꢁ ¼ 3:5 (d,
JH-H ¼ 9 Hz, 1H, H1), 3.1 (bs, 1H, NH), 2.5 (s, 6H, NCH3),
1.9 (m, 1H, H2), 1.1 (d, JH-H ¼ 9 Hz, 3H, CH3Þ, 0.9 (d,
JH-H ¼ 9 Hz, 3H, CH3); 13C-NMR (22.5 MHz, CDCl3)
ꢁ ¼ 119:8 (CN), 57.6 (CH), 48.0(NCH ), 30.0 (CH), 19.1
3
(CH3), 18.0(CH 3).
12 C. G. Overberger, P.-T. Huang, and M. B. Berenbum, Organic
Synthesis, 4, 274 (1963), In the course of our studies a paper
appeared where hydrazones, generated in situ from aldehyde
and acylhydrazones in the presence of Lewis acids, were
condensed with allylsilane: S. Kobayashi, T. Hamada, and K.
Manabe, Synlett, 2001, 1140.
13 When a solution of aldehyde and N; N-dimethylhydrazine
was treated with trimethylsilylcyanide in diethylether atroom
temperature for 3 h, the corresponding hydrazone product was
obtained with high yield.
14 Cyanohydrazination of aldehydes (R1 ¼ Phenyl, p-MeO-
phenyl, 2-Furyl, 3-Pyridyl, trans-PhCH¼CH) afforded the
corresponding hydrazones in high yield.