778
M. Shi, W.-S. Sui / Tetrahedron: Asymmetry 11 (2000) 773–779
purified by alumina (Al2O3) column chromatography to give the compound 4 as a colorless solid (264
mg, 97%). Mp 80–81°C (dec.); [α]D −4.4 (c 1.20, CHCl3); δH (CDCl3) 4.10 (2H, s, br., NH2), 5.12 (1H,
d, J 7.4 Hz), 7.0–7.50 (10H, m, Ar), 7.50–7.70 (4H, m, Ar), 7.70–8.0 (8H, m, Ar); MS (EI) m/z (%) 500
(M+, 3.6), 559 (0.6), 467 (100), 371 (0.7); [found: C, 76.65; H, 5.07; N, 5.74%. HRMS (EI) m/z 500.1458
(M+). C32H25N2PS requires: C, 76.78; H, 5.03; N, 5.60%; M, 500.1467].
3.4. Typical reaction procedure
To a solution of phosphoramide 4 (50.0 mg, 0.1 mmol) and AgOTf (25.7 mg, 0.1 mmol) in THF (2
ml) was added benzaldehyde (53 mg, 0.5 mmol, 50 µl) at room temperature. After stirring the reaction
mixture for 0.5 h, allyltributyltin (199 mg, 0.6 mmol, 186 µl) was added into the reaction solution at
−20°C and the reaction mixture was stirred at −20°C for 8 h. The reaction was quenched by a mixture of
15% aq. HCl (5 ml) and solid KF (1 g) at ambient temperature for 30 min. The resulting precipitate was
filtered off, and the filtrate was dried over MgSO4 and then concentrated under reduced pressure. The
residue was purified by silica gel column chromatography to give the homoallylic alcohol as a colorless
oil (52 mg, 70%).
Acknowledgements
We thank Professor Albert S. C. Chan and the National Natural Sciences Foundation of China
for financial support. We also thank the Inoue Photochirogenesis Project (ERATO, JST) for chemical
reagents.
References
1. (a) Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: Cambridge, 1993. (b) Noyori, R. Asymmetric Catalysis in Organic
Synthesis; John Wiley & Sons: New York, 1994. (c) Gawley, R. E.; Aube, J. Principles of Asymmetric Synthesis; Baldwin,
J. E.; Magnus, P. D., Eds.; Pergamon: Oxford, 1996.
2. (a) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092. (b) Short, R. P.; Masamune, S. J. Am. Chem. Soc. 1989,
111, 1892. (c) Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401. (d) Herold, T.; Hoffmann, R. W. Angew. Chem.,
Int. Ed. Engl. 1978, 17, 768. (e) Hoffmann, R. W.; Herold, T. Chem. Ber. 1981, 114, 375. (f) Roush, W. R.; Walts, A. E.;
Hoong, L. K. J. Am. Chem. Soc. 1985, 107, 8186. (g) Corey, E. J.; Yu, C.-M.; Kim, S. S. J. Am. Chem. Soc. 1989, 111,
5495. (h) Riediker, M.; Duthaler, R. O. Angew. Chem., Int. Ed. Engl. 1989, 28, 494. (i) Schmidt, B.; Seebach, D. Angew.
Chem., Int. Ed. Engl. 1991, 30, 99. (j) Otera, J.; Yoshinaga, Y.; Yamaji, T.; Yoshioka, T.; Kawasaki, Y. Organometallics
1985, 4, 1213. (k) Boga, C.; Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Organomet. Chem. 1988, 353,
177. (l) Motoyama, Y.; Narusawa, H.; Nishiyama, H. Chem. Commun. 1999, 131. (m) Casolari, S.; Cozzi, P. G.; Orioli, P.;
Tagliavini, E.; Umani-Ronchi, A. Chem. Commun. 1997, 2123. (n) Gauthier Jr., D. R.; Carreira, E. M. Angew. Chem. Int.
Ed. Engl. 1996, 35, 2363.
3. (a) Furuta, K.; Mouri, M.; Yamamoto, H. Synlett 1991, 561. (b) Ishihara, K.; Mouri, M.; Gao, Q.; Maruyama, T.; Furuta, K.;
Yamamoto, H. J. Am. Chem. Soc. 1993, 115, 11490.
4. Marshall, J. A.; Tang, Y. Synlett 1992, 653.
5. (a) Aoki, S.; Mikami, K.; Tetrada, M.; Nakai, T. Tetrahedron 1993, 49, 1783. (b) Costa, A. L.; Piazza, M. G.; Tagliavini, E.;
Trombini, C.; Umani-Ronchi, A. J. Am. Chem. Soc. 1993, 115, 7001. (c) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am.
Chem. Soc. 1993, 115, 8467. (d) Keck, G. E.; Geraci, L. S. Tetrahedron Lett. 1993, 34, 7827. (e) Keck, G. E.; Krishnamurthy,
D.; Grier, M. C. J. Org. Chem. 1993, 58, 6543.
6. Yanagisawa, A.; Nakashima, H.; Ishiba, A.; Yamamoto, H. J. Am. Chem. Soc. 1996, 118, 4723.
7. (a) Miller, E. J.; Brill, T. B.; Rheingold, A. L.; Fultz, W. C. J. Am. Chem. Soc. 1983, 105, 7581. (b) Jommi, G.; Pagliarin, R.;
Rizzi, G.; Sisti, M. Synlett 1993, 833. (c) Arai, Y.; Nagata, N.; Masaki, Y. Chem. Pharm. Bull. 1995, 43, 2243. (d) Masaki,
Y.; Satoh, Y.; Makihara, T.; Shi, M. Chem. Pharm. Bull. 1996, 44, 454.