DOI: 10.1039/C4GC02115K
Page 3 of 5
Green Chemistry
sulfinates and amines. Compared with previous works, this
work shows its simplicity, environmental friendliness and
low-cost, which could meet the requirement of green
chemistry. The research on iodine-mediated or iodine-
35 catalyzed reactions for the synthesis of other important
compounds is ongoing in our laboratory.
solution after the reaction.
According to the experimental results described the above,
a proposed reaction pathway is depicted in Scheme 3. Initially,
the sulfinic acid sodium salt reacts with iodine, affording the
sulfonyl iodide intermediate A.9c Due to its instability, the
5
sulfonyl iodide intermediate
A is easily subjected to
homolysis, giving a sulfonyl radical B and a iodine radical
(I·).9 Then, the sulfonyl radical B attacks on hydrogen of
amine to afford the desired sulfonamide, together with the
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (21172079), the Science and Technology Planning Project
40 of Guangdong Province (2011B090400031), and Guangdong
Natural Science Foundation (10351064101000000).
10 formation of hydrogen atom (H·).10 Meanwhile, the molecular
iodine is partly re-generated via the self-coupling of the
iodine radical, which could participate in the reaction untill I2
is fully transformed to NaI. In this sense, I2 has no catalytic
characteristics in this process. In addition, the formed
15 hydrogen atom is finally converted into molecular hydrogen
via a self-coupling process. In the present reaction system, I2
practically is a reactant or inducer, which is depicted in
Scheme 4. The total reaction equation (Scheme 4) could well
explain why the full conversion of 0.5 mmol of 1a to 3a
20 requires 0.25 mmol of I2 (Table 1, entry 6).
Notes and references
1
(a) B. Masereel, S. Rolin, F. Abbate, A. Scozzafava and C. T. Supuran,
J. Med. Chem., 2002, 45, 312; (b) A. K. Ganguly, S. S. Alluri, D.
Caroccia, D. Biswas, C. -H. Wang, E. Kang, Y. Zhang, A. T.
McPhail, S. S. Carroll, C. Burlein, V. Munshi, P. Orth and C.
Strickland, J. Med. Chem., 2011, 54, 7176; (c) A. M. Gilbert, S.
Caltabiano, F. E. Koehn, Z. J. Chen, G. D. Francisco, J. W. Ellingboe,
Y. Kharode, A. M. Mangine, R. Francis, M. T. Smith and D. Gralnick,
J. Med. Chem., 2002, 45, 2342; (d) J. J. Li, M. B. Norton, E. J.
Reinhard, G. D. Anderson, S. A. Gregory, P. C. Isakson, C. M.
Koboldt, J. L. Masferrer, W. E. Perkins, K. Seibert, Y. Zhang, B. S.
Zweifel and D. B. Reitz, J. Med. Chem., 1996, 39, 1846; (e) T. Owa,
H. Yoshino, T. Okauchi, K. Yoshimatsu, Y. Ozawa, N. H. Sugi, T.
Nagasu, N. Koyanagi and K. Kitoh, J. Med. Chem., 1999, 42, 3789.
(a) X. Huang, J. C. Wang, Z. Q. Ni, S. C. Wang and Y. J. Pan, Chem.
Commun., 2014, 50, 4582; (b) K. Bahrami, M. M. Khodaei and M.
Soheilizad, J. Org. Chem., 2009, 74, 9287; (c) S. Lakrout, H. K’tir, A.
Amria, M. Berredjem and N. -E. Aouf, RSC Adv., 2014, 4, 16027; (d)
B. R. Rosen, J. C. Ruble, T. J. Beauchamp and A. Navarro, Org. Lett.,
2011, 13, 2564; (e) A. R. Massah, S. Sayadi and S. Ebrahimi, RSC
Adv., 2012, 2, 6606; (f) F. Shi, M. K. Tse, X. J. Cui, D. Gördes, D.
Michalik, K. Thurow, Y. Q. Deng and M. Beller, Angew. Chem., Int.
Ed., 2009, 48, 5912; (g) L. D. Luca and G. Giacomelli, J. Org. Chem.,
2008, 73, 3967; (h) D. A. Powell and H. Fan, J. Org. Chem., 2010, 75,
2726; (i) F. Shi, M. K. Tse, S. L. Zhou, M. -M. Pohl, J. Radnik, S.
Hübner, K. Jähnisch, A. Brückner and M. Beller, J. Am. Chem. Soc.,
2009, 131, 1775.
45
50
55
60
65
70
75
80
85
90
2
3
4
X. D. Tang, L. B. Huang, C. R. Qi, X. Wu, W. Q. Wu and H. F. Jiang,
Chem. Commun., 2013, 49, 6102.
(a) Q. H. Gao, S. Liu, X. Wu and A. X. Wu, Org. Lett., 2014, 16,
4582; (b) Y. C. Teo, S. N. Riduan and Y. Zhang, Green Chem., 2013,
15, 2365; (c) Y. X. Li, H. X. Wang, S. Ali, X. F. Xia and Y. M.
Liang, Chem. Commun., 2012, 48, 2343; (d) H. Batchu, S. Bhatta-
charyya and S. Batra, Org. Lett., 2012, 14, 6330; (e) Z. H. He, H. R.
Li and Z. P. Li, J. Org. Chem., 2010, 75, 4636; (f) T. D. Wang, H.
Zhang, F. F. Han, L. P. Long, Z. Y. Lin and H. P. Xia, Angew. Chem.,
Int. Ed., 2013, 52, 9251; (g) H. Batchu, S. Bhattacharyya and S.
Batra, Org. Lett., 2012, 14, 6330; (h) H. Zaimoku, T. Hatta, T.
Taniguchi and H. Ishibashi, Org. Lett., 2012, 14, 6088.
Scheme 2 Control experiments.
5
(a) F. L. Yang and S. K. Tian, Angew. Chem., Int. Ed., 2013, 52, 4929;
(b) Y. Z. Yan, Y. H. Zhang, C. T. Feng, Z. G. Zha and Z. Y. Wang,
Angew. Chem., Int. Ed., 2012, 51, 8077; (c) W. L. Ge and Y. Y. Wei,
Green Chem., 2012, 14, 2066; (d) Y. F. Liao, P. C. Jiang, S. P. Chen,
H. R. Qi and G. J. Deng, Green Chem., 2013, 15, 3302; (e) M. A.
Kumar, P. Swamy, M. Naresh, M. M. Reddy, C. N. Rohitha, S.
Prabhakar, A. V. S. Sarma, J. R. P. Kumar and N. Narender, Chem.
Commun., 2013, 49, 1711; (f) F. H. Xiao, H. Chen, H. Xie, S. Q.
Chen, L. Yang and G. J. Deng, Org. Lett., 2014, 16, 50; (g) Z. H. He,
W. P. Liu and Z. P. Li, Chem. Asian J. 2011, 6, 1340.
25
Scheme 3 Proposed reaction mechanism.
6
(a) S. Tang, Y. Wu, W. Q. Liao, R. P. Bai, C. Liu and A. W. Lei,
Chem. Commun., 2014, 50, 4496; (b) A. Sagar, S. Vidyacharan and D.
S. Sharada, RSC Adv., 2014, 4, 37047.
Scheme 4 A total reaction equation for this transformation.
In conclusion, we have developed a green and sustainable
30 method for the synthesis of sulfonamides from sodium
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3