R. Anilkumar, D. J. Burton / Tetrahedron Letters 43 (2002) 2731–2733
2733
3. (a) Cohen, S. G.; Wolosinski, H. T.; Scheuer, P. J. J. Am.
Chem. Soc. 1949, 71, 3439–3440; (b) Cohen, S. G.;
Wolosinski, H. T.; Scheuer, P. J. J. Am. Chem. Soc. 1950,
72, 3952–3953.
4. Prober, M. J. Am. Chem. Soc. 1953, 75, 968–973.
5. Dixon, S. J. Org. Chem. 1956, 21, 400–403; US Patent
2,874,197 1955.
14. (a) Banger, K. K.; Brisdon, A. K.; Gupta, A. Chem.
Commun. 1997, 139–140; (b) Banger, K. K.; Banham, R.
P.; Brisdon, A. K.; Cross, W. I.; Damant, G.; Parsons, S.;
Pritchard, R. G.; Sousa-Pedrares, A. J. Chem. Soc.,
Dalton Trans. 1999, 427–434.
15. (a) Gillet, J. P.; Sauvetre, R.; Normant, J. F. Synthesis
1986, 355–360; (b) Tellier, F.; Sauvetre, R.; Normant, J.
F.; Dromzee, U.; Jeannin, Y. J. Organomet. Chem. 1987,
331, 281–298.
6. McGrath, T. F.; Levine, R. J. Am. Chem. Soc. 1955, 77,
4168–4169.
16. The yield may slightly vary from reaction to reaction; this
yield was obtained in the typical experimental procedure
described in Ref. 17.
7. (a) Kazenikova, G. V.; Talalaeva, T. V.; Zimin, A. V.;
Simonov, A. P.; Kocheshov, K. A. Izv. Akad. Nauk
SSSR 1961, 1063; (b) Segree, N. M.; Shopeet’ko, N. N.;
Timoteyuk, G. V. Zh. Struekturn Khim. 1965, 6, 300; (c)
Petril, O. P.; Makhina, A. A.; Talalaeva, T. V.;
Kocheshov, K. A. Doklady Akad. Nauk SSSR 1966, 167,
594; (d) Hodgdon, R. B.; MacDonald, D. I. J. Polym.
Sci., Polym. Chem. Ed. 1968, 6, 711–717.
8. (a) Sigalov, A. B.; Beletskaya, I. P. Izv. Akad. Nauk
SSSR Ser. Khim. 1988, 445–450; (b) Nichols, L. D.;
Obermayer, A. S.; Panar, M. US Patent 3,449,449 1969.
9. (a) Shingu, H.; Hisazumi, M. US Patent 3,489,807 1970;
(b) Prober, M. US Patent 2,651,627 1953; (c) Prober, M.
US Patent 2,752,400 1956; (d) Hisazumi, M.; Shingu, H.
Nippon Kagaku Kaishi 1980, 1142–1147.
10. Sorokina, R. S.; Rybakova, L. F.; Kalinovskii, I. O.;
Beletskaya, I. P. Izv. Akad. Nauk SSSR, Ser. Khim. 1985,
1647–1649.
11. (a) Hansen, S. W.; Spawn, T. D.; Burton, D. J. J.
Fluorine Chem. 1987, 35, 415–420; (b) Burton, D. J.;
Hansen, S. W. J. Am. Chem. Soc. 1986, 108, 4229–4230.
12. (a) Heinze, P. L.; Burton, D. J. J. Fluorine Chem. 1986,
31, 115–119; (b) Heinze, P. L.; Burton, D. J. J. Org.
Chem. 1988, 53, 2714–2720.
17. Typical procedure: A 250 mL three-necked flask fitted
with a dry ice/isopropanol condenser, septum and a low
temperature thermometer was charged with anhydrous
ZnCl2 (3.42 g, 25 mmol) and THF (15 mL) under an N2
atmosphere. The suspension was cooled to 15°C and
HFC-134a (2.5 mL, 30 mmol) was condensed into the
slurry. Then, an LDA [generated from diisopropylamine
(7 mL, 50 mmol) and n-BuLi (20 mL, 2.5 M, 50 mmol) in
THF (25 mL) at 0°C] solution was added slowly (ꢀ35
min) through a cannula to the HFC-134a/ZnCl2 slurry
while keeping the temperature at 15–20°C (the tip of the
cannula was dipped into the THF to avoid decomposi-
tion of trifluorovinyllithium, formed by reaction of
gaseous HFC-134a with LDA, at the tip). The pale
yellow reaction mixture was stirred for 1 h and allowed to
warm to rt. The 19F NMR yield of the zinc reagent was
73%. The zinc reagent was concentrated to ꢀ half its
volume (40 mL), then 3.51 g (15 mmol) of p-MeOC6H4I
and 0.28 g (1.5 mol%) Pd(PPh3)4 were added to the
solution of the zinc reagent. The reaction mixture was
heated at 60°C/1 h, cooled, triturated several times with
hexanes, and the solvent was removed by rotoevapora-
tion. Silica gel column chromatography gave 2.29 g (12.2
mmol, 82%) of pure p-MeOC6H4CFꢀCF2. The spectro-
scopic data was in agreement with a sample prepared
previously in this laboratory.12b
13. (a) Burdon, J.; Coe, P. L.; Haslock, I. B.; Powell, R. L.
Chem. Commun. 1996, 49–50; (b) Burdon, J.; Coe, P. L.;
Haslock, I. B.; Powell, R. L. J. Fluorine Chem. 1997, 85,
151–153; (c) Burdon, J.; Coe, P. L.; Haslock, I. B.;
Powell, R. L. J. Fluorine Chem. 1999, 99, 127–131.