Journal of the American Chemical Society
Communication
REFERENCES
■
(1) For reviews on the biological activities of OxPLs, see: (a) Bochkov,
V. N.; Oskolkova, O. V.; Birukov, K. G.; Levonen, A. L.; Binder, C. J.;
Stockl, J. Antioxid. Redox Signaling 2010, 12, 1009. (b) Jahn, U.; Galano,
J.-M.; Durand, T. Angew. Chem., Int. Ed. 2008, 47, 5894. (c) Ashraf, M.
Z.; Srivastava, S. In LipoproteinsRole in Health and Diseases; Frank, S.,
Kostner, G., Eds.; InTech: Rijeka, 2012; Vol. 1, pp 409−430.
(2) (a) Watson, A. D.; Subbanagounder, G.; Welsbie, D. S.; Faull, K. F.;
Navab, M.; Jung, M. E.; Fogelman, A. M.; Berliner, J. A. J. Biol. Chem.
1999, 274, 24787. (b) Cole, A. L.; Subbanagounder, G.; Mukhopadhyay,
S.; Berliner, J. A.; Vora, D. K. Arterioscler., Thromb., Vasc. Biol. 2003, 23,
1384. (c) Subbanagounder, G.; Wong, J. W.; Lee, H.; Faull, K. F.; Miller,
E.; Witztum, J. L.; Berliner, J. A. J. Biol. Chem. 2002, 277, 7271.
(3) Egger, J.; Bretscher, P.; Freigang, S.; Kopf, M.; Carreira, E. M.
Angew. Chem., Int. Ed. 2013, 52, 5382.
(4) For an overview over the various mechanisms of cyclopentenone
(iso-)prostanoids on the example of 4, see: (a) Scher, J. U.; Pillinger, M.
H. Clin. Immunol. 2005, 114, 100. (b) Scher, J. U.; Pillinger, M. H. J.
Invest. Med. 2009, 57, 703.
Figure 5. Effects of the analogues for inhibiting secretion of
proinflammatory cytokines IL-6 and IL-12 in BMDCs.
(5) For cyclopentenone prostaglandins as potent electrophiles, see:
(a) Straus, D. S.; Glass, C. K. Med. Res. Rev. 2001, 21, 185. (b) Garzon
B.; Oeste, C. L.; Díez-Dacal, B.; Perez-Sala, D. J. Proteomics 2011, 74,
2243. (c) Oeste, C. L.; Perez-Sala, D. Mass. Spectrom. Rev. 2014, 33, 110.
(6) For cyclopentenone isoprostanes as potent electrophiles, see:
(a) Levonen, A.-L.; Landar, A.; Ramachandran, A.; Ceaser, E. K.;
Dickinson, D. A.; Zanoni, G.; Morrow, J. D.; Darley-Usmar, V. M.
Biochem. J. 2004, 378, 373. (b) Musiek, E. S.; Gao, L.; Milne, G. L.; Han,
W.; Everhart, M. B.; Wang, D.; Backlund, M. G.; DuBois, R. N.; Zanoni,
G.; Vidari, G.; Blackwell, T. S.; Morrow, J. D. J. Biol. Chem. 2005, 280,
35562.
́
,
The observation that 2 undergoes ready conversion to lactone
3 has provided key insights into the chemistry of this class of
isoprostanes. Importantly, the greater activity of the lactone,
which lacks an epoxide, underscores that this plays a minor role
as an electrophilic site for decreasing IL-6 and IL-12 secretion.
Additional investigations of structures in which the endocyclic
enone is absent destroy the molecule’s capability for cytokine
inhibition completely, revealing that the endocyclic enone is
crucial for biological activity. Prior investigations by us revealed
that 1 readily undergoes elimination in aqueous media,3 and
indeed, it is well worth noting that analysis of the NMR spectra
first reported for 1 reveals the presence of signals consistent with
2.2a When combined with the results from this study, it leads to a
hypothesis that lactone 3, as the most active agent, elicits the
observed anti-inflammatory effects. It can be speculated that
highly potent lactone 3 is formed to some degree under
physiological conditions from 2. Lactone 3 is not only the
chemically most stable compound from the series 1−3 but, in
turn, might also constitute a longer lived version of free acid 2
being stabilized against β-oxidation and therefore exhibiting
higher activity in vivo.15 This explanation could account for the
significant difference in biological activity between 4 and 2, as
only the latter is able to form the lactone. The results set the stage
for additional challenging experiments involving detection of the
various structures intracelullarly in real time. Additionally, it
provides new leads for the development of anti-inflammatory
therapeutics.
́
́
(7) Gugiu, B. G.; Mouillesseaux, K.; Duong, V.; Herzog, T.; Hekimian,
A.; Koroniak, L.; Vondriska, T. M.; Watson, A. D. J. Lipid Res. 2008, 49,
510.
(8) (a) For a recent review on the Nrf2−Keap1 signaling pathway, see:
Ma, Q. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 3401. (b) For the
emerging role of the Nrf2−Keap1 signaling pathway in cancer, see:
Jaramillo, M. C.; Zhang, D. D. Genes Dev. 2013, 27, 2179. (c) For the
role of the Nrf2−Keap1 signaling pathway in neurodegenerative disease,
see: Gan, L.; Johnson, J. A. Biochim. Biophys. Acta 2014, 1842, 1208.
(9) Jung, M. E.; Berliner, J. A.; Koroniak, L.; Gugiu, B. G.; Watson, A.
D. Org. Lett. 2008, 10, 4207.
(10) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K.-A.
Angew. Chem., Int. Ed. 2005, 44, 794.
(11) Compound 3 was also observed during the first total synthesis of
EC (2): Acharya, H. P.; Kobayashi, Y. Angew. Chem., Int. Ed. 2005, 44,
3481.
(12) Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem.
Soc. 1988, 110, 291.
(13) Evans, D. A.; Fu, G. C. J. Org. Chem. 1990, 55, 5678.
(14) For the reductive opening of α,β-epoxyketones with SmI2, see:
Molander, G. A.; Hahn, G. J. Org. Chem. 1986, 51, 2596.
(15) In vivo studies confirmed the viability of lactone 3 as a molecular
probe. Lactone 3 is responsible for a decreased infiltration of monocytes
and neutrophils into the lungs of mice challenged by induced
inflammation with LPS and shows superior effects over EC (2):
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and characterization data for all
reactions and products, including H and 13C NMR spectra.
1
Bretscher, P.; Egger, J.; Shamshiev, A.; Trotzmuller, M.; Kofeler, H.;
̈
̈
̈
This material is available free of charge via the Internet at http://
Carreira, E. M.; Kopf, M.; Freigang, S. Manuscript submitted.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We are grateful to the ETH Zurich for generous support through
grant ETH-18 09-1.
■
D
dx.doi.org/10.1021/ja509892u | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX