82
T. Shishido et al. / Chemical Physics Letters 539–540 (2012) 79–82
873 K. On the other hand, in the case of ethylene, the adsorbed
amount reached a maximum around 773 K. Therefore, a rela-
tively-large amount of hydrogen and ethylene adsorbed over
Ga2O3 evacuated at 773 K. According to Figures 3 and 4, the initial
rate of ethylene hydrogenation depends on the amount of ad-
sorbed hydrogen and ethylene. This implies that the hydrogenation
of ethylene would proceed on the basis of the typical Langmuir–
Hinshelwood mechanism. We have found that the adsorption iso-
therm of H2 on b-Ga2O3 after the adsorption of ethylene is incon-
sistent with the conventional adsorption isotherm of H2 on b-
Ga2O3. Therefore, at present, we assume that a part of hydrogen
adsorbed competitively on Ga2O3 with lower alkanes. The adsorp-
tion behaviors of lower alkenes and H2 and the conformation of the
adsorbed lower alkenes and H2 species on b-Ga2O3 are now under
investigation.
Appendix A. Supplementary data
Supplementary data associated with this article can be found,
References
[1] R.L. Burwell, A.B. Littlewood, M. Cardew, G. Pass, C.T.H. Stoddart, J. Am. Chem.
Soc. 82 (1960) 6272.
[2] D.L. Harrison, D. Nicholls, H. Steiner, J. Catal. 7 (1967) 359.
[3] A.L. Dent, R.J. Kokes, J. Phys. Chem. 73 (1969) 3781.
[4] A.L. Dent, R.J. Kokes, J. Phys. Chem. 73 (1969) 3772.
[5] A.L. Dent, R.J. Kokes, J. Phys. Chem. 74 (1970) 3653.
[6] R.J. Kokes, A.L. Dent, Adv. Catal. 22 (1972) 1.
[7] H. Hattori, Y. Tanaka, K. Tanabe, Chem. Lett. (1975) 659.
[8] H. Hattori, Y. Tanaka, K. Tanabe, J. Am. Chem. Soc. 98 (1976) 4652.
[9] Y. Tanaka, H. Hattori, K. Tanabe, Chem. Lett. (1976) 37.
[10] Y. Imizu, K. Sato, H. Hattori, J. Catal. 76 (1982) 65.
[11] Y. Imizu, H. Hattori, K. Tanabe, J. Chem. Soc.-Chem. Commun. (1978) 1091.
[12] Y. Nakano, T. Yamaguchi, K. Tanabe, J. Catal. 80 (1983) 307.
[13] J. Kondo, Y. Sakata, K. Domen, K. Maruya, T. Onishi, J. Chem. Soc.-Faraday Trans.
8 (6) (1990) 397.
[14] J. Kondo, K. Domen, K. Maruya, T. Onishi, J. Chem. Soc.-Faraday Trans. 8 (6)
(1990) 3021.
[15] J. Kondo, K. Domen, K. Maruya, T. Onishi, J. Chem. Soc.-Faraday Trans. 8 (6)
(1990) 3665.
[16] J. Kondo, K. Domen, K. Maruya, T. Onishi, Chem. Phys. Lett. 188 (1992) 443.
[17] J. Kondo, K. Domen, K. Maruya, T. Onishi, J. Chem. Soc.-Faraday Trans. 8 (8)
(1992) 2095.
4. Conclusion
Hydrogenation of lower alkenes (ethylene, propylene, and
1-butene) to the corresponding alkanes proceeded over b-Ga2O3.
The rate of the hydrogenation was faster in the order of ethyl-
ene ꢀ propylene > 1-butene over Ga2O3. Ga2O3 also showed the
activity for hydrogenation of 1,3-butadiene and 1,4-addition of
hydrogen to 1,3-butadiene mainly took place to give 2-butenes
as main product. The highest activity for hydrogenation of ethylene
on Ga2O3 was observed after evacuation at 773 K, whereas the
highest activity for isomerization of 1-butene was observed after
evacuation at 1173 K. The active sites for hydrogenation on
Ga2O3 are different from those for isomerization and basic sites
of Ga2O3 is not active for hydrogenation. The initial rate of ethylene
hydrogenation depends on the amounts of chemisorbed hydrogen
and ethylene, which indicates that the hydrogenation of ethylene
on Ga2O3 involves two adsorbed species, that is, H2 and ethylene.
This implies that the hydrogenation proceeds on the basis of the
Langmuir–Hinshelwood mechanism.
[18] J.H. Sinfelt, J. Phys. Chem. 68 (1964) 232.
[19] Y. Imizu, H. Hattori, K. Tanabe, T. Kondo, Bull. Chem. Soc. Jpn. 52 (1979) 2189.
[20] G.W. Wang, H. Hattori, J. Chem. Soc.-Faraday Trans. I (80) (1984) 1039.
[21] S.E. Collins, M.A. Baltanas, A.L. Bonivardi, Langmuir 21 (2005) 962.
[22] S.E. Collins, M.A. Baltanas, J.L.G. Fierro, A.L. Bonivardi, J. Catal. 211 (2002) 252.
[23] Y.X. Pan, D.H. Mei, C.J. Liu, Q.F. Ge, J. Phys. Chem. C 115 (2011) 10140.
[24] K. Teramura, H. Tsuneoka, T. Shishido, T. Tanaka, Chem. Phys. Lett. 467 (2008)
191.
[25] H. Tsuneoka, K. Teramura, T. Shishido, T. Tanaka, J. Phys. Chem. C 114 (2010)
8892.
[26] Y. Imizu, K. Tanabe, H. Hattori, J. Catal. 56 (1979) 303.
[27] K. Tanabe, K. Saito, J. Catal. 35 (1974) 247.
[28] T. Iizuka, H. Hattori, Y. Ohno, J. Sohma, K. Tanabe, J. Catal. 22 (1971) 130.
[29] M. Boudart, A.B. Walters, A. Delbouil, E.G. Derouane, V. Indovina, J. Am. Chem.
Soc. 94 (1972) 6622.
[30] H. Hattori, Chem. Rev. 95 (1995) 537.
[31] H. Hattori, Appl. Catal. A-Gen. 222 (2001) 247.
Acknowledgement
A part of this work was supported by the Research Seeds Quest
Program (Lower Carbon Society (2010)) from the Japan Science and
Technology Agency (JST).