Paper
Catalysis Science & Technology
4 K. Balakrishnan and J. Schwank, J. Catal., 1991, 132,
451–464.
5.0 Conclusion
Alloying palladium with gold on a silica support to form a
Pd(shell)–Au(core) nanoparticle improved the neopentane
isomerization selectivity compared to a silica-supported
monometallic palladium catalyst with a similar particle size.
This improvement was more significant when the Pd shell
was influenced by the underlying Au core (i.e., lower Pd
weight loading catalysts). As the amount of palladium added
to the catalyst increased, the catalytic behavior was similar to
monometallic Pd. The turnover rate for hydrogenolysis
decreased as the fraction of Au increased which correlated
with an increase CO linear-to-bridge ratio. Calorimetry
showed that the electronic effect of Au addition lessened with
increasing Pd wt.%. Although both electronic and geometric
effects have been observed, the changes in catalytic perfor-
mance correlate more with changes in geometry. The identity
of the metal atoms in the core of the particle appears to be
less significant to catalytic properties than the surface com-
position and metal atoms near the surface.
5 T. P. Wu, D. J. Childers, C. Gomez, A. M. Karim,
N. M. Schweitzer, A. J. Kropf, H. Wang, T. B. Bolin, Y. F. Hu,
L. Kovarik, R. J. Meyer and J. T. Miller, ACS Catal., 2012, 2,
2433–2443.
6 A. Gross, Top. Catal., 2006, 37, 29–39.
7 J. Sehested, K. E. Larsen, A. L. Kustov, A. M. Frey,
T. Johannessen, T. Bligaard, M. P. Andersson, J. K. Norskov
and C. H. Christensen, Top. Catal., 2007, 45, 9–13.
8 B. Hammer and J. K. Norskov, Surf. Sci., 1995, 343, 211–220.
9 B. Hammer and J. K. Norskov, Impact of Surface Science on
Catalysis, in Advances in Catalysis, ed. B. C. Gates and
H. Knozinger, 2000, vol. 45, pp. 71–129.
10 J. Kleis, J. Greeley, N. A. Romero, V. A. Morozov, H. Falsig,
A. H. Larsen, J. Lu, J. J. Mortensen, M. Dulak,
K. S. Thygesen, J. K. Norskov and K. W. Jacobsen, Catal.
Lett., 2011, 141, 1067–1071.
11 N. Schweitzer, H. L. Xin, E. Nikolla, J. T. Miller and S. Linic,
Top. Catal., 2010, 53, 348–356.
12 D. Childers, A. Saha, N. Schweitzer, R. M. Rioux, J. T. Miller
and R. J. Meyer, ACS Catal., 2013, 3, 2487–2496.
13 F. Gao and D. W. Goodman, Chem. Soc. Rev., 2012, 41,
8009–8020.
14 J. Rebelli, A. A. Rodriguez, S. G. Ma, C. T. Williams and
J. R. Monnier, Catal. Today, 2011, 160, 170–178.
15 M. Bonarowska, J. Pielaszek, W. Juszczyk and Z. Karpinski,
J. Catal., 2000, 195, 304–315.
16 P. Dash, T. Bond, C. Fowler, W. Hou, N. Coombs and
R. W. J. Scott, J. Phys. Chem. C, 2009, 113, 12719–12730.
17 N. El Kolli, L. Delannoy and C. Louis, J. Catal., 2013, 297,
79–92.
18 A. M. Venezia, L. F. Liotta, G. Pantaleo, V. La Parola,
G. Deganello, A. Beck, Z. Koppany, K. Frey, D. Horvath and
L. Guczi, Appl. Catal., A, 2003, 251, 359–368.
19 A. Sarkany, O. Geszti and G. Safran, Appl. Catal., A, 2008,
350, 157–163.
20 K. Luo, T. Wei, C. W. Yi, S. Axnanda and A. W. Goodman,
J. Phys. Chem. B, 2005, 109, 23517–23522.
21 S. W. T. Price, J. M. Rhodes, L. Calvillo and A. E. Russell,
J. Phys. Chem. C, 2013, 117, 24858–24865.
22 A. F. Lee, C. J. Baddeley, C. Hardacre, R. M. Ormerod,
R. M. Lambert, G. Schmid and H. West, J. Phys. Chem., 1995,
99, 6096–6102.
Acknowledgements
JTM and NS were supported as part of the Institute for
Atom-Efficient Chemical Transformations (IACT), an Energy
Frontier Research Center funded by the U.S. Department of
Energy, Office of Science, Office of Basic Energy Sciences.
R. J. M. and D. C. gratefully acknowledge funding for this
work from the National Science Foundation (CBET grant no.
0747646). Partial funding for DC was provided by the Chemi-
cal Sciences and Engineering Division at Argonne National
Laboratory and the Office of the Vice Chancellor for Research
at the University of Illinois at Chicago. S. M. K. S. and R. M. R.
acknowledge funding from the Department of Energy, Office
of Basic Energy Sciences, Chemical Sciences, Geosciences,
and Biosciences Division, Catalysis Sciences Program under
grant number DE-FG02-12ER16364. R. M. R. acknowledges
financial support provided through a 3M Non-Tenured
Faculty Grant (NTFG). The STEM work was performed at the
UIC Research Resource Center. Use of the Advanced Photon
Source was supported by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, under
contract no. DE-AC02-06CH11357. MRCAT operations are
supported by the Department of Energy and the MRCAT mem-
ber institutions. The CleanCat Core facility acknowledges
funding from the Department of Energy (DE-FG02-03ER15457
and DE-AC02-06CH11357) used for the purchase of the
DRIFTS system and the AMI-200, respectively.
23 M. S. Chen, D. Kumar, C. W. Yi and D. W. Goodman,
Science, 2005, 310, 291–293.
24 X. Yang, C. Huang, Z. Y. Fu, H. Y. Song, S. J. Liao, Y. L. Su,
L. Du and X. J. Li, Appl. Catal., B, 2013, 140, 419–425.
25 P. Dolle, R. Baudoing-Savois, M. De Santis, M. C. Saint-Lager,
M. Abel, J. C. Bertolini and P. Delichère, Surf. Sci., 2002, 518,
1–13.
References
1 J. A. Rodriguez and D. W. Goodman, J. Phys. Chem.,
1991, 95, 4196–4206.
26 Z. Li, F. Gao, O. Furlong and W. T. Tysoe, Surf. Sci., 2010,
604, 136–143.
2 J. A. Rodriguez and D. W. Goodman, Science, 1992, 257,
897–903.
3 J. H. Sinfelt, Sci. Am., 1985, 253, 90–98.
27 B. Zhu, G. Thrimurthulu, L. Delannoy, C. Louis, C. Mottet,
J. Creuze, B. Legrand and H. Guesmi, J. Catal., 2013, 308,
272–281.
4376 | Catal. Sci. Technol., 2014, 4, 4366–4377
This journal is © The Royal Society of Chemistry 2014