10.1002/cctc.201900689
ChemCatChem
FULL PAPER
[12] Y. Amada, H. Watanabe, M. Tamura, Y. Nakagawa, K. Okumura, K.
Tomishige, J. Phys. Chem. C 2012, 116, 23503-23514.
[13] Y. Amada, H. Watanabe, Y. Hirai, Y. Kajikawa, Y. Nakagawa, K.
Tomishige, ChemSusChem 2012, 5, 1991-1999.
[14] M. Tamura, Y. Amada, S. Liu, Z. Yuan, Y. Nakagawa, K. Tomishige, J.
Mol. Catal. A: Chem. 2014, 388-389, 177-187.
[15] C. Deng, L. Leng, X. Duan, J. Zhou, X. Zhou, W. Yuan, J. Mol. Catal. A:
Chem. 2015, 410, 81-88.
[16] C. Deng, L. Leng, J. Zhou, X. Zhou, W. Yuan, Chin. J. Catal. 2015, 36,
1750-1758.
internal standard. The products were identified by GC–MS and confirmed
with standard compounds, and the identified products included 1,3-
propanediol (1,3-PDO), 1,2-propanediol (1,2-PDO), 1-propanol (1-PO), 2-
propanol (2-PO), acetone, acetol, ethylene glycol, methanol, ethanol,
propane, methane, ethane and CO2. For all the reactions tested, the
carbon balance was better than 97%. The conversion of glycerol and the
selectivity of products were calculated after steady state was achieved
(12 h time on stream, Fig. S7) based on the following equations:
Conversion of glycerol (%) = (mole of glycerol in – mole of glycerol out) /
(mole of glycerol in)*100.
[17] C. Deng, X. Duan, J. Zhou, X. Zhou, W. Yuan, S. L. Scott, Catal. Sci.
Technol. 2015, 5, 1540-1547.
[18] W. Luo, Y. Lu, L. Gong, H. Du, M. Jiang, Y. Ding, React. Kinet. Mech.
Catal. 2016, 118, 481-496.
Selectivity (%) = (mole of carbon in specific product) / (mole of carbon in
consumed glycerol)*100.
[19] W. Luo, Y. Lu, L. Gong, H. Du, T. Wang, Y. Ding, RSC Adv. 2016, 6,
13600-13608.
[20] W. Luo, Y. Lu, L. Gong, H. Du, M. Jiang, Y. Ding, Chin. J. Catal. 2016,
37, 2009-2017.
Dehydration/dehydrogenation tests of 2-butanol
[21] J. J. Varghese, L. Cao, C. Robertson, Y. Yang, L. F. Gladden, A. A.
Lapkin, S. H. Mushrif, ACS Catal. 2019, 9, 485-503.
[22] Y. Nakagawa, M. Tamura, K. Tomishige, Res. Chem. Intermed. 2018,
44, 3879-3903.
[23] A. Shimao, S. Koso, N. Ueda, Y. Shinmi, I. Furikado, K. Tomishige,
Chem. Lett. 2009, 38, 540-541.
[24] Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, Appl. Catal.
B 2010, 94, 318-326.
[25] J. Chaminand, L. a. Djakovitch, P. Gallezot, P. Marion, C. Pinel, C.
Rosier, Green Chem. 2004, 6, 359-361.
[26] T. Kurosaka, H. Maruyama, I. Naribayashi, Y. Sasaki, Catal. Commun.
2008, 9, 1360-1363.
[27] S. Zhu, X. Gao, Y. Zhu, Y. Zhu, X. Xiang, C. Hu, Y. Li, Appl. Catal. B
2013, 140-141, 60-67.
[28] L. Qin, M. Song, C. Chen, Green Chem. 2010, 12, 1466-1472.
[29] L. Gong, L. Yuan, Y. Ding, R. Lin, L. I. Jingwei, W. Dong, W. Tao, W.
Chen, Chin. J. Catal. 2009, 30, 1189-1191.
[30] S. Zhu, X. Gao, Y. Zhu, J. Cui, H. Zheng, Y. Li, Appl. Catal. B 2014,
158-159, 391-399.
The dehydration/dehydrogenation of 2-butanol was used as a model
reaction to probe the acid sites of the catalysts. The reaction was
conducted at 140 oC in a quartz flow reactor containing 0.050 g catalyst.
Prior to the reaction tests, all the samples were reduced in flowing dry H2
o
(20 mL/min) at 300 C for 1 h. Liquid 2-butanol was bubbled with flowing
H2 or N2 (20 mL/min) into the reaction system at 0.1 MPa and 60 oC.
Reactant and product concentrations were measured by GC with an HP-
INNO WAX capillary column (30 m × 0.32 mm × 0.5 µm,FID detector).
In inert atmosphere, dehydration product (butene) and dehydrogenation
product (butanone) were detected and verified by GC-MS; while in H2
atmosphere, the dehydration product was further hydrogenated into
butane.
Conversion of 2-butanol (%) = (mole of 2-butanol in – mole of 2-butanol
out) / (mole of 2-butanol in)*100.
Selectivity (%) = (mole of specific product) / (mole of consumed 2-
butanol)*100.
[31] L. Gong, Y. Lu, Y. Ding, R. Lin, J. Li, W. Dong, T. Wang, W. Chen, Appl.
Catal. A 2010, 390, 119-126.
[32] R. Arundhathi, T. Mizugaki, T. Mitsudome, K. Jitsukawa, K. Kaneda,
ChemSusChem 2013, 6, 1345-1347.
[33] S. García-Fernández, I. Gandarias, J. Requies, M. B. Güemez, S.
Bennici, A. Auroux, P. L. Arias, J. Catal. 2015, 323, 65-75.
[34] S. Zhu, X. Gao, Y. Zhu, Y. Li, J. Mol. Catal. A: Chem. 2015, 398, 391-
398.
Acknowledgements
[35] S. Zhu, Y. Zhu, S. Hao, L. Chen, B. Zhang, Y. Li, Catal. Lett. 2011, 142,
267-274.
[36] T. Mizugaki, T. Yamakawa, R. Arundhathi, T. Mitsudome, K. Jitsukawa,
K. Kaneda, Chem. Lett. 2012, 41, 1720-1722.
[37] S. S. Priya, V. P. Kumar, M. L. Kantam, S. K. Bhargava, A. Srikanth, K.
V. R. Chary, Ind. Eng. Chem. Res. 2015, 54, 9104-9115.
[38] Q. Tong, A. Zong, W. Gong, L. Yu, Y. Fan, RSC Adv. 2016, 6, 86663-
86672.
[39] T. Aihara, H. Kobayashi, S. Feng, H. Miura, T. Shishido, Chem. Lett.
2017, 46, 1497-1500.
A. W. and T. Z. acknowledge the National Key Projects for
Fundamental
Research and Development
of
China
(2018YFB1501600 and 2016YFA0202801), the National Natural
Science Foundation of China (21690080, 21690084, 21721004,
21673228), the Strategic Priority Research Program of the
Chinese Academy of Sciences (XDB17020100) and DICP ZZBS
201612 for financial supports.
[40] S. Garcia-Fernandez, I. Gandarias, Y. Tejido-Nunez, J. Requies, P. L.
Arias, ChemCatChem 2017, 9, 4508-4519.
Keywords: glycerol • hydrogenolysis • 1,3-propanediol •
tungsten oxide • in situ acid sites
[41] S. García-Fernández, I. Gandarias, J. Requies, F. Soulimani, P. L.
Arias, B. M. Weckhuysen, Appl. Catal. B 2017, 204, 260-272.
[42] Y. Fan, S. Cheng, H. Wang, D. Ye, S. Xie, Y. Pei, H. Hu, W. Hua, Z. H.
Li, M. Qiao, B. Zong, Green Chem. 2017, 19, 2174-2183.
[43] Y. Fan, S. Cheng, H. Wang, J. Tian, S. Xie, Y. Pei, M. Qiao, B. Zong,
Appl. Catal. B 2017, 217, 331-341.
[44] M. Edake, M. Dalil, M. J. D. Mahboub, J. L. Dubois, G. S. Patience,
RSC Adv. 2017, 7, 3853-3860.
[45] S. Feng, B. Zhao, L. Liu, J. Dong, Ind. Eng. Chem. Res. 2017, 56,
[1]
[2]
M. Besson, P. Gallezot, C. Pinel, Chem. Rev. 2014, 114, 1827-1870.
T. Werpy, G. Holladay, Top Value Added Chemicals From Biomass
Volume I-Results of Screening for Potential Candidates from Sugars
and Synthesis Gas, Department of Energy Washington DC, 2004.
M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C. Della Pina, Angew.
Chem., Int. Ed. 2007, 46, 4434-4440.
[3]
[4]
11065-11074.
[46] G. Shi, Z. Cao, J. Xu, K. Jin, Y. Bao, S. Xu, Catal. Lett. 2018, 148,
2304-2314.
[47] G. Shi, J. Xu, Z. Song, Z. Cao, K. Jin, S. Xu, X. Yan, Mol. Catal. 2018,
C. H. Zhou, J. N. Beltramini, Y. X. Fan, G. Q. Lu, Chem. Soc. Rev.
2008, 37, 527-549.
[5]
[6]
[7]
[8]
D. Sun, Y. Yamada, S. Sato, W. Ueda, Appl. Catal. B 2016, 193, 75-92.
Y. Wang, J. Zhou, X. Guo, RSC Adv. 2015, 5, 74611-74628.
J. ten Dam, U. Hanefeld, ChemSusChem 2011, 4, 1017-1034.
K. Tomishige, Y. Nakagawa, M. Tamura, Green Chem. 2017, 19, 2876-
2924.
456, 22-30.
[48] W. Zhou, Y. Zhao, Y. Wang, S. Wang, X. Ma, ChemCatChem 2016, 8,
3663-3671.
[49] W. Zhou, Y. Zhao, S. Wang, X. Ma, Catal. Today 2017, 298, 2-8.
[50] W. Zhou, J. Luo, Y. Wang, J. Liu, Y. Zhao, S. Wang, X. Ma, Appl. Catal.
B 2019, 242, 410-421.
[9]
Y. Nakagawa, Y. Shinmi, S. Koso, K. Tomishige, J. Catal. 2010, 272,
191-194.
[51] L. Liu, Y. Zhang, A. Wang, T. Zhang, Chin. J. Catal. 2012, 33, 1257-
1261.
[10] Y. Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige,
Appl. Catal. B 2011, 105, 117-127.
[52] Y. Zhang, X. Zhao, Y. Wang, L. Zhou, J. Zhang, J. Wang, A. Wang, T.
Zhang, J. Mater. Chem. A 2013, 1, 3724.
[11] Y. Nakagawa, X. Ning, Y. Amada, K. Tomishige, Appl. Catal. A 2012,
433-434, 128-134.
This article is protected by copyright. All rights reserved.