ACS Catalysis
Research Article
(6) Soares, A. P. V.; Dimitrov, L. D.; de Oliveira, M. C. R. A.; Hilaire,
L.; Portela, M. F.; Grasselli, R. K. Appl. Catal., A 2003, 253, 191−200.
(7) Batist, Ph. A.; van de Moesdijk, C. G. M.; Matsuura, I.; Schuit, G.
C. A. J. Catal. 1971, 20, 40−57.
of ideal reaction sites. Therefore, a similar catalytic cycle may
work in some other reaction systems involving O2, such as
alcohol oxidation, oxidative steam reforming of methanol, and
ammonia-deNOx.
(8) Krishnan, V. V.; Suib, S. L. J. Catal. 1999, 184, 305−315.
(9) Liaw, B. J.; Cheng, D. S.; Yang, B. L. J. Catal. 1989, 118, 312−
326.
CONCLUSION
■
In this study, catalytic performances of Pd-based intermetallic
compounds (PdmMn/SiO2: M = Bi, Fe, Ge, In, Sn, Zn) in the
oxidative dehydrogenation of 1-butene and n-butane were
investigated. A remarkable increase in selectivity (and also
yield) to dehydrogenation products (1,3-butadiene and/or 1-
butene) was obtained when monometallic Pd was replaced by
PdIn, PdBi, or Pd3Fe. Undesired combustion into COx
proceeded over monometallic Pd, significantly decreasing
selectivity. The presence of the second metal (In, Bi, or Fe)
adjacent to Pd effectively inhibits undesired combustion, likely
by capturing O2 as a lattice oxygen. The incorporated lattice
oxygen reacts with hydrogen atoms derived from the
hydrocarbon by C−H activation over Pd sites, resulting in
the formation of water and oxygen vacancy and/or the parent
intermetallic phase. Thus, a combination of C−H activation by
Pd and redox of the second metal provides a unique and
effective dehydrogenation process, compared to monometallic
Pd or the second metal oxide alone. Under the reaction
conditions tested, the catalyst surface decomposes into Pd and
the second metal oxide (Pd−MOx nanocomposite), forming a
core−shell structure with a parent intermetallic core and a
composite shell as a steady state. The insights obtained in this
study will open the way to the development of a more effective
dehydrogenation system based on bifunctional catalysis.
(10) Herniman, H. J.; Pyke, D. R.; Reid, R. J. Catal. 1979, 58, 68−73.
(11) Gibson, M. A.; Hightower, J. W. J. Catal. 1976, 41, 420−430.
(12) She, Y.; Han, J.; Ma, Y. H. Catal. Today 2001, 67, 43−53.
(13) Fujimoto, K.; Kunugi, T. Ind. Eng. Chem. Prod. Rd. 1981, 20,
319−323.
(14) Onda, A.; Komatsu, T.; Yashima, T. J. Catal. 2004, 221, 378−
385.
(15) Furukawa, S.; Tamura, A.; Ozawa, K.; Komatsu, T. Appl. Catal.,
A 2014, 469, 300−305.
(16) Under the reaction atmosphere, any intermetallic species at the
catalyst surface will be oxidized into Pd metal and the second metal
oxide phases. Therefore, the presence of a small amount of the
impurity phase does not seem to strongly affect the reaction outcome.
(17) Okamoto, H. Desk Handbook: Phase Diagrams for Binary Alloys;
ASM International: Materials Park, OH, 2000.
(18) Bielz, T.; Lorenz, H.; Amann, P.; Klotzer, B.; Penner, S. J. Phys.
Chem. C 2011, 115, 6622−6628.
(19) Bielz, T.; Lorenz, H.; Jochum, W.; Kaindl, R.; Klauser, F.;
Klotzer, B.; Penner, S. J. Phys. Chem. C 2010, 114, 9022−9029.
(20) Bond, G. C.; Tripathi, J. B. P. J. Chem. Soc., Faraday Trans. 1
1976, 72, 933−941.
(21) Benedetti, A.; Fagherazzi, G.; Pinna, F.; Rampazzo, G.; Selva,
M.; Strukul, G. Catal. Lett. 1991, 10, 215−223.
(22) Iwasa, N.; Mayanagi, T.; Ogawa, N.; Sakata, K.; Takezawa, N.
Catal. Lett. 1998, 54, 119−123.
(23) Batista, J.; Pintar, A.; Mandrino, D.; Jenko, M.; Martin, V. Appl.
Catal., A 2001, 206, 113−124.
ASSOCIATED CONTENT
* Supporting Information
(24) Hong, C. T.; Yeh, C. T.; Yu, F. H. Appl. Catal. 1989, 48, 385−
396.
■
S
(25) Fagherazzi, G.; Benedetti, A.; Polizzi, S.; Dimario, A.; Pinna, F.;
Additional catalytic data, peak deconvolution of XRD pattern,
TG−DTA, amount of exposed Pd. This material is available
Signoretto, M. Catal. Lett. 1995, 32, 293−303.
(26) Ziemecki, S. B.; Michel, J. B.; Jones, G. A. React. Solid 1986, 2,
187−202.
(27) Kovnir, K.; Armbruster, M.; Teschner, D.; Venkov, T. V.;
Szentmiklosi, L.; Jentoft, F. C.; Knop-Gericke, A.; Grin, Y.; Schlogl, R.
Surf. Sci. 2009, 603, 1784−1792.
(28) Iwasa, N.; Ogawa, N.; Masuda, S.; Takezawa, N. Bull. Chem. Soc.
Jpn. 1998, 71, 1451−1455.
AUTHOR INFORMATION
Corresponding Author
Tel.: +81-3-5734-3532.
■
(29) Pinna, F.; Selva, M.; Signoretto, M.; Strukul, G.; Boccuzzi, F.;
Benedetti, A.; Canton, P.; Fagherazzi, G. J. Catal. 1994, 150, 356−367.
(30) Dapaah, J. K. A.; Uemichi, Y.; Ayame, A.; Matsuhashi, H.;
Sugioka, M. Appl. Catal., A 1999, 187, 107−113.
(31) Kim, W. J.; Shin, E. W.; Kang, J. H.; Moon, S. H. Appl. Catal., A
2003, 251, 305−313.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by JSPS KAKENHI Grant No.
23360353. We thank Center for Advanced Materials Analysis
Tokyo Institute of Technology for the aid of TEM−EDX
analysis.
(32) Hirano, T.; Kazahaya, Y.; Nakamura, A.; Miyao, T.; Naito, S.
Catal. Lett. 2007, 117, 73−78.
(33) Huang, L.; Wang, Z.; Ang, T. P.; Tan, J.; Wong, P. K. Catal. Lett.
2006, 112, 219−225.
(34) Kovnir, K.; Armbruster, M.; Teschner, D.; Venkov, T. V.;
Jentoft, F. C.; Knop-Gericke, A.; Grin, Y.; Schlogl, R. Sci. Technol. Adv.
Mater. 2007, 8, 420−427.
(35) Armbruster, M.; Behrens, M.; Fottinger, K.; Friedrich, M.;
Gaudry, E.; Matam, S. K.; Sharma, H. R. Catal. Rev. 2013, 55, 289−
367.
(36) Iwasa, N.; Takezawa, N. Top. Catal. 2003, 22, 215−224.
(37) Friedrich, M.; Teschner, D.; Knop-Gericke, A.; Armbruster, M.
J. Catal. 2012, 285, 41−47.
(38) Marchesini, F. A.; Irusta, S.; Querini, C.; Miro, E. Appl. Catal., A
2008, 348, 60−70.
(39) Skala, T.; Veltruska, K.; Moroseac, M.; Matolinova, I.;
Korotchenkov, G.; Matolin, V. Appl. Surf. Sci. 2003, 205, 196−205.
REFERENCES
■
(1) Passmann, W. Ind. Eng. Chem. 1970, 62, 48−51.
(2) Dumez, F. J.; Froment, G. F. Ind. Eng. Chem. Proc. Dd 1976, 15,
291−301.
(3) Hakonsen, S. F.; Holmen, A. In Handbook of Heterogeneous
̊
Catalysis; Ertl, G., Knozinger, H., Schuth, F., Weitkamp, J., Eds.; Wiley-
VCH Verlag GmbH & Co. KGaA: Weinheim, 2008; Chapter 14; pp
3384−3386.
(4) Park, J. H.; Noh, H.; Park, J. W.; Row, K. H.; Jung, K. D.; Shin, C.
H. Res. Chem. Intermed. 2011, 37, 1125−1134.
(5) Jung, J. C.; Lee, H.; Kim, H.; Chung, Y. M.; Kim, T. J.; Lee, S. J.;
Oh, S. H.; Kim, Y. S.; Song, I. K. J. Mol. Catal. A: Chem. 2007, 271,
261−265.
3541
dx.doi.org/10.1021/cs500920p | ACS Catal. 2014, 4, 3533−3542