European Journal of Organic Chemistry
10.1002/ejoc.201701242
COMMUNICATION
and non-toxic semiconductor can catalyze the formation of aryl
radicals starting from easily available diazonium salts. Only 5
mol% of catalyst is necessary to prepare a wide range of
differently-substituted -arylated heteroarenes, and the catalyst
loading can be reduced down to 1 mol% for experiments in larger
scales. In this way, it is possible to perform the reaction at 10
mmol scale, without any significant yield loss. The process
tolerates in situ generation of the diazonium salts from the
corresponding anilines. Yields vary from moderate to excellent,
the combination of electron-rich heteroarenes with electron-poor
diazonium salts usually leading to optimal yields. Interestingly, the
use of sunlight to promote the reaction can shorten reaction times
and improve the outcome of the transformation, probably as the
result of more homogeneous illumination. As an extension of this
chemistry, bismuth(III) oxide has also been successfully applied
to promote the aryl addition to different unsaturated systems.
2
013, 125, 542-879; Angew. Chem., Int Ed. 2013, 52, 812 847.
–
[
5]
For selected examples, see: a) L. Cermenati, C. Richter, A. Albini, Chem.
Commun. 1998, 805–806; b) F. Su, S. C. Mathew, G. Lipner, X. Fu, M.
Antonietti, S. Blechert, X. Wang, J. Am. Chem. Soc. 2010, 132, 16299-
1
6301; c) M. Zhang, C. Chen, W. Ma, J. Zhao, Angew. Chem. 2008, 120,
876–9879; Angew. Chem., Int. Ed. 2008, 47, 9730–9733; d) X.-H. Ho,
9
M.-J. Kang, S.-J. Kim, E. D. Park, H.-Y. Jang, Catal. Sci. Technol. 2011,
, 923–926; e) Z. Zhang, K. Edma, S. Lian, E. A. Weiss, J. Am. Chem.
1
Soc. 2017, 139, 4246-4249.
[
[
6]
7]
G. G. Briand, N. Burford, Chem. Rev. 1999, 99, 2601–2658.
X. Meng, Z. Zhang, J. Mol. Catal. A: Chem. 2016, 423, 533–549.
P. Riente, A. M. Adams, J. Albero, E. Palomares, M. A. Pericàs, Angew.
Chem. 2014, 126, 9767–9770; Angew. Chem., Int. Ed. 2014, 53, 9613–
[8]
9
616.
[9]
P. Riente, M. A. Pericàs, ChemSusChem 2015, 8, 1841–1844.
[
10] O. O. Fadeyi, J. J. Mousseau, Y. Feng, C. Allais, P. Nuhant, M. Z. Chen,
B. Pierce, R. Robinson, Org. Lett. 2015, 17, 5756–5759.
[
11] a) J. O. Trent, G. R. Clark, A. Kumar, W. D. Wilson, D. W. Boykin, J. E.
Hall, R. R. Tidwell, B. L. Blagburn, S. Neidle, J. Med. Chem. 1996, 39,
4554–4562; b) M. M. Conn, J. Jr. Rebek, Chem. Rev. 1997, 97, 1647–
Experimental Section
1668; c) Heterocyclic Chemistry in Drug Discovery, (Ed.: J. J. Li), Wiley,
Weinheim, 2013.
[
12] A. R. Murphy, J. M. J. Frèchet, Chem. Rev. 2007, 107, 1066–1096. (b)
J. E. Anthony, Chem. Rev. 2006, 106, 5028–5048; c) C. Wang, H. Dong
W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208–2267.
2 3
Diazonium salt 1 (0.25 mmol, 1.0 equiv.) and Bi O (6 mg, 5 mol%) were
solved in DMF (1.5 ml) under argon. The solution was degassed with an
argon flow during 10 minutes. Afterwards, the heterocycle 2 (27 equiv.)
was added. The reaction mixture was sealed and placed at 10 cm from a
[
13] a) P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi, J.
Pinson, J.-M. Savéant, J. Am. Chem. Soc. 1997, 119, 201–207; b) C.
Galli, Chem. Rev. 1988, 88, 765–792; c) S. Milanesi, M. Fagnoni, A.
Albini J. Org. Chem. 2005, 70, 603–610.
2
3 W CFL. After 15 hours, the mixture was poured into water (5 ml). The
organic phase was extracted with Et O (3 x 5 ml) and washed with water
and brine. After drying it with MgSO , the reaction mixture was filtered and
2
4
[
[
[
14] a) M. R. Heinrich, Chem. Eur. J. 2009, 15, 820–833; b) I. Ghosh, L. Marzo,
A. Das, R. Shaikh, B. König, Acc. Chem. Res. 2016, 49, 1566–1577.
15] a) H. Meerwein, E. Buckner, K. von Emster, J. Prakt. Chem. 1939, 152,
concentrated under vacuum. The desired product was purified by silica gel
column chromatography.
237–266; (b) C. S. Rondestvedt, Org. React. 1976, 225–259.
16] For reviews, see: a) D. P. Hari, B. König, Angew. Chem. 2013, 125,
4832–4842; Angew. Chem., Inter. Ed. 2013, 52, 4734–4743; b) S.
Shaaban, N. Maulide, Synlett 2017, DOI: 10.1055/s-0036-1588776; c) O.
Boubertakh, J.-P. Goddard, Eur. J. Org. Chem. 2017, 2072–2084; d) see
also: S. Crespi, S. Protti, M. Fagnoni, J. Org. Chem. 2016, 81, 9612–
9619.
Acknowledgements
This work was funded by MINECO (grant CTQ2015-69136-R,
MINECO/FEDER), DEC (grant 2014SGR827) and the CERCA
Programme/Generalitat de Catalunya. We also thank the Severo Ochoa
Excellence
Accreditation
2014-2018
(SEV-2013-0319).
L.B.
[17] M. R. Heinrich, A. Wetzel, M. Kirschstein, Org. Lett. 2007, 9, 3833–3835.
[18] A. Wetzel, G. Pratsch, R. Kolb, M. R. Heinrich, Chem.- Eur. J. 2010, 16,
acknowledges the COFUND-Marie Curie action of the European Union’s
FP7 (291787-ICIQ-IPMP) for a postdoctoral fellowship.
2547–2556
.
[
[
[
[
19] A. Wetzel, V. Ehrhardt, M. R. Heinrich, Angew. Chem. 2008, 120, 9270–
9273; Angew. Chem., Int. Ed. 2008, 47, 9130–9133.
Keywords: Bismuth oxide • photocatalysis • arylation • visible
light • diazonium salts
20] D. Hata, T. Moriuchi, T. Hirao, T. Amaya, Chem. – Eur. J. 2017, 23, DOI:
1
0.1002/chem.201700630.
21] S. Shaaban, A. Jolit, D. Petkova, N. Maulide, Chem. Commun. 2015, 51,
3902–13905.
22] a) D. P. Hari, P. Schroll, B. König, J. Am. Chem. Soc. 2012, 134, 2958–
961; b) In situ formation of the diazonium salt: P. Maity, Debasish Kundu,
[
1]
a) Organic Photochemistry, (Ed.: V. Ramamurthy, K. S. Schanze),
Marcel Dekker, New York, 1997; b) Chemical Photocatalysis (Ed.: B.
König), De Gruyter, Göttingen, 2013; c) M. Kozlowski, T. Yoon, J. Org.
Chem 2016, 81, 6895–6897; d) B. König, Eur. J. Org. Chem. 2017,
1
2
B. C. Ranu Eur. J. Org. Chem. 2015, 1727–1734.
1979–1981.
[
[
[
23] K. Rybicka-Jasiꢀska, B. König, D. Gryko, Eur. J. Org. Chem. 2017, 2104–
[
2]
a) J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40,
2107.
102–113; b) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev.
2013, 113, 5322–5363; c) D. M. Schultz, T. P. Yoon, Science 2014, 343,
985; d) M. N. Hopkinson, B. Sahoo, J.-L. Li, F. Glorius, Chem. – Eur. J.
2014, 20, 3874–3886; e) M. H. Shaw, J. Twilton, D. W. C. MacMillan J.
24] Y.-S. Feng, X.-S. Bu, B. Huang, C. Rong, J.-J. Dai, J. Xu, H.-J. Xu,
Tetrahedron Lett. 2017, 58, 1939–1942.
25] a) P. Schroll, D. P. Hari, B. König, ChemistryOpen 2012, 130–133; b) D.
P. Hari, T. Hering, B. König, Angew. Chem. 2014, 123, 743–747; Angew.
Chem., Int. Ed. 2014, 53, 725–728; c) D. Xue, Z. H. Jia, C.-J. Zhao, Y.-
Y. Zhang, C. Wang, J. Xiao, Chem. – Eur. J. 2014, 20, 2960–2965; d) V.
Gauchot, D. R. Sutherland, A.-L. Lee, Chem. Sci. 2017, 8, 2885–2889.
26] For review, see: H. Chen, C. E. Nanayakkara, V. H. Grassian, Chem.
Rev. 2012, 112, 5919–5948.
Org. Chem. 2016, 81, 6898–6926.
[
[
3]
4]
a) D. A. Nicewicz, T. M. Nguyen, ACS Catal. 2014, 4, 355–360; b) N. A.
Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166.
For reviews, see: a) M. Pelaeza, N. T. Nolanb, S. C. Pillaib, M. K. Seeryc,
P. Falarasd, A. G. Kontosd, P. S.M. Dunlope, J. W. J. Hamiltone, J. A.
Byrnee, K. O’Sheaf, M. H. Entezarig, D. D. Dionysiou, Appl. Catal., B
[
[
27] J. Zoller, D. C. Fabry, M. Rueping, ACS Catal. 2015, 5, 3900–3904.
28] D. C. Fabry, Y. A. Ho, R. Zapf, W. Tremel, M. Panthöfer, M. Rueping, T.
H. Rehm, Green Chem. 2017, 19, 1911–1918.
2012, 125, 331–349; b) M. R. Hoffmann, S. T. Martin, W. Choi, D. W.
[
Bahnemann, Chem. Rev. 1995, 95, 69–96; c) H. Kisch, Angew. Chem
This article is protected by copyright. All rights reserved.