Please do not adjust margins
Catalysis Science & Technology
Page 10 of 12
DOI: 10.1039/C5CY00966A
ARTICLE
Journal Name
6.
H. A. Ruiz, R. M. Rodríguez-Jasso, B. D. Fernandes, A. A.
Vicente and J. A. Teixeira, Renewable and Sustainable
Energy Reviews, 2013, 21, 35-51.
Conclusions
7.
K. Anastasakis and A. B. Ross, Bioresource Technology,
2011, 102, 4876-4883.
S. Dutta, S. De, B. Saha and M. I. Alam, Catalysis Science &
Technology, 2012, 2, 2025-2036.
P. Bhaumik, T. Kane and P. L. Dhepe, Catalysis Science &
Technology, 2014, 4, 2904-2907.
H. Kobayashi, H. Ohta and A. Fukuoka, Catalysis Science &
Technology, 2012, 2, 869-883.
B. L. Arne Haug, Olav Smidsrød, Acta Chemica
Scandinavica, 1966, 20, 8.
H. Grasdalen, B. Larsen and O. Smidsrød, Carbohydrate
Research, 1979, 68, 23-31.
H. Takeda, F. Yoneyama, S. Kawai, W. Hashimoto and K.
Murata, Energy & Environmental Science, 2011, 4, 2575-
2581.
M. Enquist-Newman, A. M. E. Faust, D. D. Bravo, C. N. S.
Santos, R. M. Raisner, A. Hanel, P. Sarvabhowman, C. Le,
D. D. Regitsky, S. R. Cooper, L. Peereboom, A. Clark, Y.
Martinez, J. Goldsmith, M. Y. Cho, P. D. Donohoue, L. Luo,
B. Lamberson, P. Tamrakar, E. J. Kim, J. L. Villari, A. Gill, S.
A. Tripathi, P. Karamchedu, C. J. Paredes, V. Rajgarhia, H.
K. Kotlar, R. B. Bailey, D. J. Miller, N. L. Ohler, C. Swimmer
and Y. Yoshikuni, Nature, 2014, 505, 239-243.
J. Seon, T. Lee, S. C. Lee, H. D. Pham, H. C. Woo and M.
Song, Bioresource Technology, 2014, 157, 22-27.
H. D. Pham, J. Seon, S. C. Lee, M. Song and H.-C. Woo,
Bioresource Technology, 2013, 148, 601-604.
T. M. Aida, T. Yamagata, C. Abe, H. Kawanami, M.
Watanabe and R. L. Smith, Journal of Supercritical Fluids,
2012, 65, 39-44.
Various metal oxides were evaluated as solid base catalysts in
the hydrothermal conversion of alginate for the first time. We
demonstrated that CaO can catalyze the production of lactic
acid, with a maximum lactic acid yield (14.66%) at 200 °C after
6 h. After reacting for 1 h, the lactic acid yield was 12.66%,
much higher than with other metal oxides. In addition, the
lactic acid yield with the CaO catalyst was two times higher
than with the traditional homogeneous base catalyst, NaOH.
The differences in the catalytic activities of the metal oxides
were attributed to the basicity of the catalysts measured by
titration. The hydration of CaO provides the Brønsted basic
sites into the aqueous reaction medium, catalyzing the
hydrothermal conversion of alginate to lactic acid. After the
second run, the catalytic activity of CaO decreased to less than
half the yield of lactic acid in the first run, due to the depletion
of Brønsted bases (OH-) from byproducts covering the active
site of CaO. However, the original catalytic activity was
successfully recovered by recalcination of the deactivated CaO
8.
9.
10.
11.
12.
13.
14.
catalyst.
A plausible reaction pathway for lactic acid
production is proposed to describe the role of the CaO
catalyst. Metal cations released from hydrated metal oxides
seem to influence the reaction pathways, thus determining the
yields of final products. The hydrothermal treatment of
macroalgae-derived alginate using the CaO catalyst
demonstrated high potential for the production of lactic acid
via a renewable and environmentally benign process.
15.
16.
17.
18.
W. Jeon, C. Ban, G. Park, T.-K. Yu, J.-Y. Suh, H. C. Woo and
D. H. Kim, Journal of Molecular Catalysis A: Chemical,
2015, 399, 106-113.
Acknowledgements
19.
20.
21.
S. S. Toor, L. Rosendahl and A. Rudolf, Energy, 2011, 36,
2328-2342.
M. Möllerꢀ, P. Nilgesꢀ, F. Harnisch and U. Schröder,
ChemSusChem, 2011, 4, 566-579.
M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina and
B. F. Sels, Energy & Environmental Science, 2013, 6, 1415-
1442.
The authors are grateful to the Korean Ministry of Oceans and
Fisheries (Contact No. 20140559) for financial support.
Notes and references
‡ Footnotes relating to the main text should appear here. These
might include comments relevant to but not central to the
matter under discussion, limited experimental and spectral data,
and crystallographic data.
§
§§
etc.
22.
23.
24.
A. Corma, S. Iborra and A. Velty, Chemical Reviews, 2007,
107, 2411-2502.
D. Esposito and M. Antonietti, ChemSusChem, 2013, 6,
989-992.
Y. Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tang, Y.
Wang, C. Zhu, Z. Cao, G. Wang and H. Wan, Nature
Commnunications, 2013, 4, 1-7.
25.
26.
27.
S. Zhang, F. Jin, J. Hu and Z. Huo, Bioresource Technology,
2011, 102, 1998-2003.
K. Niemela and E. Sjostrom, Carbohydrate Research, 1985,
144, 241-249.
M. L. Granados, M. D. Z. Poves, D. M. Alonso, R. Mariscal,
F. C. Galisteo, R. Moreno-Tost, J. Santamaría and J. L. G.
Fierro, Applied Catalysis B: Environmental, 2007, 73, 317-
326.
O. Fruhwirth, G. W. Herzog, I. Hollerer and A. Rachetti,
Surface Technology, 1985, 24, 301-317.
1.
2.
3.
4.
5.
F. M. Kerton, Y. Liu, K. W. Omari and K. Hawboldt, Green
Chemistry, 2013, 15, 860-871.
R. P. John, G. S. Anisha, K. M. Nampoothiri and A. Pandey,
Bioresource Technology, 2011, 102, 186-193.
L. Brennan and P. Owende, Renewable and Sustainable
Energy Reviews, 2010, 14, 557-577.
T. M. Mata, A. A. Martins and N. S. Caetano, Renewable
and Sustainable Energy Reviews, 2010, 14, 217-232.
N. Wei, J. Quarterman and Y.-S. Jin, Trends in
Biotechnology, 2013, 31, 70-77.
28.
29.
A. Onda, T. Ochi, K. Kajiyoshi and K. Yanagisawa, Catalysis
Communications, 2008, 9, 1050-1053.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 10
Please do not adjust margins