RSC Advances
Paper
original metal–organic linker bond could lead to leaching of
some metal ion from the MOF.41 ICP-MS analysis showed the
presence of 3.03 ppm of Fe in the ltrate of the fourth cycle,
which means that the reused catalyst released some iron. These
two changes led to a slight decrease in acidity density of catalyst,
which further resulted in lower selectivity to LA. Besides, from
the result of NH3-TPD in Fig. S8,† the acidity of the recovered
8 F. de Clippel, M. Dusselier, R. Van Rompaey, P. Vanelderen,
J. Dijkmans, E. Makshina, L. Giebeler, S. Oswald,
G. V. Baron, J. F. M. Denayer, P. P. Pescarmona,
P. A. Jacobs and B. F. Sels, J. Am. Chem. Soc., 2012, 134, 10089.
9 Q. Guo, F. T. Fan, E. A. Pidko, W. N. P. van der Graaff,
Z. C. Feng, C. Li and E. J. M. Hensen, ChemSusChem, 2013,
6, 1352.
catalyst decreased slightly, which also led to lower selectivity 10 F. F. Wang, C. L. Liu and W. S. Dong, Green Chem., 2013, 15,
toward lactic acid. In order to better reuse the catalyst, we 2091.
further employed a simple method for regeneration of the 11 M. S. Holm, S. Saravanamurugan and E. Taarning, Science,
recovered catalyst, referring to a protocol reported by Han et al. 2010, 328, 602.
(see ESI†).42 Activity evaluation revealed that the regenerated 12 F. Chambon, F. Rataboul, C. Pinel, A. Cabiac, E. Guillon and
MIL-100(Fe) regained the catalytic activity (28% yield of LA). N. Essayem, Appl. Catal., B, 2011, 105, 171.
Even though this catalyst couldn't keep completely stable, it still 13 L. S. Yang, X. K. Yang, E. Tian, V. Vattipalli, W. Fan and
made MIL-100(Fe) an alternative catalyst for the conversion of
fructose to LA.
H. F. Lin, J. Catal., 2016, 333, 207.
14 K. M. L. Taylor-Pashow, J. D. Rocca, Z. G. Xie, S. Tran and
W. B. Lin, J. Am. Chem. Soc., 2009, 131, 14261.
15 Y. Q. Xiao, Y. J. Cui, Q. Zheng, S. C. Xiang, G. D. Qian and
B. L. Chen, Chem. Commun., 2010, 46, 5503.
4. Conclusions
ˇ
16 A. Zukal, M. Opanasenko, M. Rubes, P. Nachtigall and
In summary, the as-synthesized MIL-100(Fe) was used for the
rst time as Lewis acid catalyst for catalytic transformation of
sugars to LA, and showed satisfactory performance. A high yield
of LA, up to 32%, was produced from fructose with MIL-100(Fe)
in H2O at 190 ꢁC for 2 h. In order to better understand the
relationship between the structure properties and the catalytic
performance, the catalytic activities of Cu-BTC and MIL-100(Cr)
were also tested and compared. The results showed that both
materials are not as active as MIL-100(Fe). The metal nature in
the framework, specic surface area, stability and Lewis acid
properties of these MOFs were demonstrated to inuence their
catalytic activities. Furthermore, the MIL-100(Fe) could be easily
reused for 4 cycles. Therefore, MOFs are very promising mate-
rials for biomass conversion, especially for LA production.
J. Jagiello, Catal. Today, 2015, 243, 69.
17 S. L. Qiu, M. Xue and G. S. Zhu, Chem. Soc. Rev., 2014, 43,
6116.
18 J. A. Mason, M. Veenstra and J. R. Long, Chem. Sci., 2014, 5,
32.
19 S. Rojas, F. J. Carmona, C. R. Maldonado, E. Barea and
J. A. R. Navarro, New J. Chem., 2016, 40, 5690.
20 A. Corma, H. Garcıa and F. X. L. i Xamena, Chem. Rev., 2010,
´
110, 4606.
21 X. F. Liu, H. Li, H. Zhang, H. Pan, S. Huang, K. L. Yang and
S. Yang, RSC Adv., 2016, 6, 90232.
22 A. Herbst and C. Janiak, New J. Chem., 2016, 40, 7958.
23 L. Mitchell, B. Gonzalez-Santiago, J. P. S. Mowat, M. E. Gunn,
P. Williamson, N. Acerbi, M. L. Clarke and P. A. Wright,
Catal. Sci. Technol., 2013, 3, 606.
´
Acknowledgements
24 L. Alaerts, E. Seguin, H. Poelman, F. Thibault-Starzyk,
P. A. Jacobs and D. E. De Vos, Chem.–Eur. J., 2006, 12, 7353.
25 T. L. H. Doan, T. Q. Dao, H. N. Tran, P. H. Tran and T. N. Le,
Dalton Trans., 2016, 45, 7875.
This work was nancially supported by the National Natural
Science Foundation of China (No. 21576059 & 21666008), the
Key Technologies R & D Program (No. 2014BAD23B01), and the
Innovation Fund for Graduate Students of Guizhou University
(No. 2016075).
´
26 L. Mitchell, P. Williamson, B. Ehrlichova, A. E. Anderson,
V. R. Seymour, S. E. Ashbrook, N. Acerbi, L. M. Daniels,
R. I. Walton, M. L. Clarke and P. A. Wright, Chem.–Eur. J.,
2014, 20, 17185.
´
27 P. Horcajada, S. Surble, C. Serre, D. Y. Hong, Y. K. Seo,
References
`
´
J. S. Chang, J. M. Greneche, I. Margiolaki and G. Ferey,
Chem. Commun., 2007, 2820.
28 A. Dhakshinamoorthy, M. Alvaro, Y. K. Hwang, Y. K. Seo,
1 K. Yan, G. S. Wu, T. Laeur and C. Jarvis, Renewable
Sustainable Energy Rev., 2014, 38, 663.
2 K. Yan, C. Jarvis, J. Gu and Y. Yan, Renewable Sustainable
Energy Rev., 2015, 51, 986.
A. Corma and H. Garcia, Dalton Trans., 2011, 40, 10719.
ˇ
ˇ
´
29 L. Kurrtova, Y. K. Seo, Y. K. Hwang, J. S. Chang and J. Cejka,
¨
3 C. Zhao, T. Bruck and J. A. Lercher, Green Chem., 2013, 15,
Catal. Today, 2012, 179, 85.
1720.
30 A. Dhakshinamoorthy, M. Alvaro, H. Chevreau,
P. Horcajada, T. Devic, C. Serre and H. Garcia, Catal. Sci.
Technol., 2012, 2, 324.
4 H. Li, P. S. Bhadury, A. Riisager and S. Yang, Catal. Sci.
Technol., 2014, 4, 4138.
5 H. Li, Z. Fang and S. Yang, ChemPlusChem, 2016, 81, 135.
6 P. Gallezot, Chem. Soc. Rev., 2012, 41, 1538.
7 M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina and
B. F. Sels, Energy Environ. Sci., 2013, 6, 1415.
31 F. Vermoortele, R. Ameloot, L. Alaerts, R. Matthessen,
B. Carlier, E. V. Ramos Fernandez, J. Gascon, F. Kapteijn
and D. E. De Vos, J. Mater. Chem., 2012, 22, 10313.
5626 | RSC Adv., 2017, 7, 5621–5627
This journal is © The Royal Society of Chemistry 2017