4
Tetrahedron
a Boekelheide-type rearrangement to give a
6. Su Y, Zhou X, He C, Zhang W, Ling X, Xiao X. J Org Chem.
2016;81:4981-4987.
undergoes
(tosyloxymethyl)azine intermediate (21), which, without
isolation, reacts subsequently with the nucleophilic amine
component (Scheme 1b). When the reaction of quinaldine N-
oxide (5) was performed without the addition of an amine, 2-
(tosyloxymethyl)quinoline (22) was isolated in 72% yield.28,29 It
was reported that this reaction gave an imidazoquinoline side
product with the incorporation of acetonitrile which was used as
the reaction solvent.20c During the optimization studies, we also
observed the formation of this side product in 6-25% yield
depending on the activating agent used when MeCN was the
reaction solvent.28 The higher yields that we obtained with
CH2Cl2 may be attributed to the lack of the formation of this side
product. In another control experiment, the reaction between
quinaldine N-oxide and morpholine, performed under the
optimized conditions but without K2CO3, gave product 7 in only
19% yield along with unreacted N-oxide 5.30 Finally, 2-picoline
N-oxide was found to be unreactive towards the Boekelheide-
type rearrangement under the standard reaction conditions and
did not provide the corresponding benzylic amination product.
7. (a) Wengryniuk SE, Weickgenannt A, Reiher C, Strotman NA,
Chen K, Eastgate MD, Baran PS. Org Lett. 2013;15:792-795. (b)
Wang D, Jia H, Wang W, Wang Z. Tetrahedron Lett.
2014;55:7130-7132. (c) Chen Y, Huang J, Hwang T-L, Chen MJ,
Tedrow JS, Farrell RP, Bio MM, Cui S. Org Lett. 2015;17:2948-
2951. (d) Xiong H, Hoye A T, Fan K-H, Li X, Clemens J,
Horchler CL, Lim, NC, Attardo G. Org Lett. 2015;17:3726-3729.
(e) Qiao K, Wan L, Sun X, Zhang K, Zhu N, Li X, Guo K. Eur J
Org Chem. 2016:1606-1611. (f) Wang D, Wang Y, Zhao J, Li L,
Miao L, Wang D, Sun H, Yu P. Tetrahedron. 2016;72:5762-5768.
(g) Hossain M, Pradhan K, Nanda AK. Tetrahedron Lett.
2017;58:3772-3776.
8. (a) Londregan AT, Jennings S, Wei L. Org Lett. 2010;12:5254-
5257. (b) Londregan AT, Jennings S, Wei L. Org Lett.
2011;13:1840-1843. (c) Londregan AT, Farley KA, Limberakis C,
Mullins PB, Piotrowski DW. Org Lett. 2012;14:2890-2893. (d)
Lecointre B, Azzouz R, Bischoff L. Tetrahedron Lett.
2014;55:1913-1915. (e) Londregan AT, Burford K, Conn EL,
Hesp KD. Org Lett. 2014;16:3336-3339. (f) Lian Y, Coffey SB, Li
Q, Londregan AT. Org Lett. 2016;18:1362-1365. (g) Aithagani
SK, Kumar M, Yadav M, Vishwakarma RA, Singh PP. J Org
Chem. 2016;81:5886-5894.
9. (a) Rieger B, Abu-Surrah AS, Fawzi R, Steiman M. J Organomet
Chem. 1995;497:73-79. (b) Wright DW, Mok HJ, Dubé CE,
Armstrong WH. Inorg Chem. 1998;37:3714-3718. (c) Hanaoka K,
Kikuchi K, Kojima H, Urano Y, Nagano Y. J Am Chem Soc.
2004;126:12470-12476. (d) Walton JW, Carr R, Evans NH, Funk
AM, Kenwright AM, Parker D, Yufit DS, Botta M, Pinto SD,
Wong K-L. Inorg Chem. 2012;51:8042-8056. (e) Gempf KL,
Butler SJ, Funk AM, Parker D. Chem Commun. 2013;49:9104-
9106. (f) Neil ER, Funk AM, Yufit DS, Parker D. Dalton Trans.
2014;43:5490-5504.
10. Carroll AR, Duffy S, Avery VM. J Org Chem. 2010;75:8291-
8294.
11. Eckhardt M, Langkopf E, Mark M, Tadayyon M, Thomas L, Nar
H, Pfrengle W, Guth B, Lotz R, Sieger P, Fuchs H, Himmelsbach
F. J Med Chem. 2007;50:6450-6453.
12. (a) Takizawa T, Matsumoto J, Tohma T, Kanke T, Wada Y,
Nagao M, Inagaki N, Nagai H, Zhang M-Q, Timmerman H. Jpn J
Pharmacol. 2001;86:55-64. (b) Takizawa T, Watanabe C, Saiki I,
Wada Y, Tohma T, Nagai H. Biol Pharm Bull. 2001;24:1127-
1132.
In summary, we have developed a one-pot synthetic protocol
that allows efficient benzylic amination reactions of methyl-
substituted azine N-oxides. This method is operationally simple,
proceeds under mild reaction conditions and does not require the
isolation of reaction intermediates. A broad range of cyclic and
acyclic secondary, primary and aromatic amines as well as
electron rich and deficient quinoline and isoquinoline N-oxides
are well tolerated in the reaction affording the benzylic amination
products in up to 82% yield. Scalability of the method has been
demonstrated through
a gram-scale reaction. Given the
importance of 2-(aminomethyl)azine derivatives as ligands and
biologically active molecules, this one-pot protocol is expected to
find widespread use in synthetic applications.
Acknowledgments
Financial support from the Scientific and Technological
Research Council of Turkey (TÜBİTAK; Grant No: 115Z865) is
gratefully acknowledged.
13. Kasibhatla SR, Hong K, Biamonte MA, Busch DJ, Karjian PL,
Sensintaffar JL, Kamal A, Lough RE, Brekken J, Lundgren K,
Grecko R, Timony GA, Ran Y, Mansfield R, Fritz LC, Ulm E,
Burrows FJ, Boehm MF. J Med Chem. 2007;50:2767-2778.
14. (a) Tavares FX, Al-Barazanji KA, Bigham EC, Bishop MJ, Britt
CS, Carlton DL, Feldman PL, Goetz AS, Grizzle MK, Guo YC,
Handlon AL, Hertzog DL, Ignar DM, Lang DG, Ott RJ, Peat AJ,
Zhou H-Q. J Med Chem. 2006;49:7095-7107. (b) Kuang G-C,
Michaels HA, Simmons JT, Clark RJ, Zhu L. J Org Chem.
2010;75:6540-6548.
References and notes
1. (a) Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem Rev.
2012;112:2642-2713. (b) Heterocyclic N-Oxides; Larionov, O. V.,
Ed.; Springer, 2017.
15. (a) Mathes W, Sauermilch W. Chem Ber. 1957;90:758-761. (b)
Yu X, Feng G, Huang J, Xu H. RSC Adv. 2016;6:30405-30411.
16. Tabolin AA, Ioffe SL. Chem Rev. 2014;114:5426-5476.
17. (a) Boekelheide V, Linn WJ. J Am Chem Soc. 1954;76:1286-1291.
(b) Lee KC, Chi DY. J Org Chem. 1999;64:8576-8581. (c) Rádl S,
Klecán O, Havlíček J. J Heterocyclic Chem. 2006;43:1447-1453.
18. (a) Pocker A. J Org Chem. 1973;38:4295-4299. (b) Korytnyk W,
Srivastava SC, Angelino N, Potti PGG, Paul B. J Med Chem.
1973;16:1096-1101.
2. (a) Andersson H, Banchelin TS-L, Das S, Olsson R, Almqvist F.
Chem Commun. 2010;46:3384-3386. (b) Andersson H, Olsson R,
Almqvist F. Org Biomol Chem. 2011;9:337-346. (c) Bering L,
Antonchick AP. Org Lett. 2015;17:3134-3137. (d) Jo W, Kim J,
Choi S, Cho SH. Angew Chem Int Ed. 2016;55:9690-9694. (e)
Johnson TC, Marsden SP. Beilstein J Org Chem. 2016;12:1-4. (f)
Johnson TC, Marsden SP. Org Lett. 2016;18:5364-5367. (g)
Crisenza GEM, Dauncey EM, Bower JF. Org Biomol Chem.
2016;14:5820-5825. (h) Zhang W-M, Dai J-J, Xu J, Xu H-J. J Org
Chem. 2017;82:2059-2066. (i) Zhang Z, Pi C, Tong H, Cui X, Wu
Y. Org Lett. 2017;19:440-443. (j) Han Y-P, Li X-S, Zhu X-Y, Li
M, Zhou L, Song X-R. J Org Chem. 2017;82:1697-1704.
3. (a) Keith JM. J Org Chem. 2008;73:327-330. (b) Keith JM. J Org
Chem. 2010;75:2722-2725. (c) Keith JM. J Org Chem.
2012;77:11313-11318. (d) Farrell RP, Elipe MVS, Bartberger
MD, Tedrow JS,Vounatsos F. Org Lett. 2013;15:168-171. (e)
Rassadin VA, Zimin DP, Raskil’dina GZ, Ivanov AY, Boyarskiy
VP, Zlotskii SS, Kukushin VY. Green Chem. 2016;18:6630-6636.
(f) Bugaenko DI, Yurovskaya MA, Karchava AV. J Org Chem.
2017;82:2136-2149. (g) Yu X, Yang S, Zhang Y, Guo M,
Yamamoto Y, Bao M. Org Lett. 2017;19:6088-6091.
19. (a) Koenig T, Wieczorek JS. J Org Chem. 1968;33:1530-1532. (b)
Andreotti D, Miserazzi E, Nalin A, Pozzan A, Profeta R, Spada S.
Tetrahedron Lett. 2010;51:6526-6530.
20. (a) Butera JA, Spinelli W, Anantharaman V, Marcopulos N,
Parsons RW, Moubarak IF, Cullinan C, Bagli JF. J Med Chem.
1991;34:3212-3228. (b) White JD, Yager KM, Stappenbeck F. J
Org Chem. 1993;58:3466-3468. (c) Sledeski AW, O’Brien MK,
Truesdale LK. Tetrahedron Lett. 1997;38:1129-1132. (d) Rane
RA, Pathak RK, Kaushik CP, Rao KVVP, Kumar A. Synth
Commun. 2002;32:1211-1217. (e) Mori T, Satouchi Y, Tohmiya
H, Higashibayashi S, Hashimoto K, Nakata M. Tetrahedron Lett.
2005;46:6417-6422. (f) Lee J, Kang S-U, Kil M-J, Shin M, Lim J-
O, Choi H-K, Jin M-K, Kim SY, Kim S-E, Lee Y-S, Min K-H,
Kim Y-H, Ha H-J, Tran R, Welter JD, Wang Y, Szabo T, Pearce
LV, Lundberg DJ, Toth A, Pavlyukovets VA, Morgan MA,
Blumberg PM. Bioorg Med Chem Lett. 2005;15:4136-4142.
4. Jones DH, Kay ST, McLellan JA, Kennedy AR, Tomkinson NCO.
Org Lett. 2017;19:3512-3515.
5. Wang H, Cui X, Pei Y, Zhang Q, Bai J, Wei D, Wu Y. Chem
Commun. 2014;50:14409-14411.