Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C6CC05496J
COMMUNICATION
Journal Name
15. Z. Han, Z. Wang, X. Zhang and K. Ding, Angew. Chem. Int. Ed.,
2009, 48, 5345.
CeO2 (Fig. S9). These results are all correlated well with the
amount of Ce3+ over CeO2/MC. It results in
a high
16. A. J. A. Watson and J. M. J. Williams Science, 2010, 329, 635.
17. R. D. Patil and S. Adimurthy, Asian J. Org. Chem., 2013, 2, 726.
18. B. Chen, L. Wang and S. Gao, ACS Catal., 2015, 5, 5851.
19. Q. Kang and Y. Zhang, Green Chem., 2012, 14, 1016.
20. R. Cano, D. J. Ramón and M. Yus, J. Org. Chem., 2011, 76, 5547.
21. M. A. Esteruelas, N. Honczek, M. Oliván, E. Oñate and M.
Valencia, Organometallics, 2011, 30, 2468.
22. B. Gnanaprakasam, J. Zhang and D. Milstein, Angew. Chem.,
2010, 122, 1510.
23. H. Tian, X. Yu, Q. Li, J. Wang and Q. Xu, Adv. Synth. Catal., 2012,
354, 2671.
24. L. Geng, X. Zhang, M. Zhang , M. Jia and G. Liu, Chem. Commun,
2014, 50, 2965.
25. X. Mou, X. Wang. Y. Li and W. Shen, CrystEngComm, 2012, 14,
5107.
26. F. Shi, M. K. Tse, M. M. Pohl, A. Brückner, S. Zhang and M.
Beller, Angew. Chem. Int. Ed., 2007, 46, 8866.
27. J. Zhang, J.-O. Müller, W. Zheng, D. Wang, D. Su and R. Schlögl,
Nano Lett., 2008, 8, 2738.
concentration of oxygen vacancies, which could significantly
improve the catalytic performance for molecular O2 activation
and subsequent oxidation of benzyl alcohol, especially under
the relatively low reaction temperature. The oxidation of
benzyl alcohol to benzaldehyde is the rate-determining step
for imine synthesis over metal oxides catalysts.13 The weak
acid-base properties were also detected (Fig. S10 NH3-TPD and
CO2-TPD). The relatively large amount of surface weak acid
sites on CeO2/MC could facilitate the coupling of benzaldehyde
and aniline.47 Additionally, it can be imaged that the isolated
state of CeO2 nanorods on the surface of carbon support could
make the facet of CeO2 have more opportunity to contact with
reagents. At the same time, the anchored CeO2 nanorods have
little opportunity to contact with each other, limiting the
aggregation of these CeO2 nanorods.
In summary, CeO2 nanorods highly dispersed on the surface
of mesoporous carbon have been obtained, and were highly
efficient in aerobic oxidative coupling of alcohol and amine to
imine. The presence of large amount of surface Ce3+ and the
suitable interaction between CeO2 nanorods and carbon
support should be responsible for the high activity and stability
in the reaction.
28. C. J. Murphy, Science, 2002, 298, 2139.
29. H. Li, H. Wang, Y. Guo, G. Lu and P. Hu, Chem. Commun., 2011,
47, 6105.
30. G. Liu, X. Wang, X. Wang, H. Han and C. Li, J. Catal., 2012, 293,
61.
31. E. Aneggi, D. Wiater, C. de Leitenburg, J. Llorca and A. Trovarelli,
ACS Catal., 2014, 4, 172.
32. K. Zhou and Y. Li, Angew. Chem. Int. Ed., 2012, 51, 602.
33. G. Chen, F. Rosei and D. Ma, Nanoscale, 2015, 7, 5578.
34. A. Migani, K. M. Neyman and S. T. Bromley, Chem. Commun.,
2012, 48, 4199.
This work was supported by the National Science
Foundation of China (Grant No. 21473073, 21473074 and
21573103) and "13th Five-Year" science and technology
research of the Education Department of Jilin Province
(2016403).
35. H. Cordatos, D. Ford and R. J. Gorte, J. Phys. Chem., 1996, 100,
18128.
36. K. Zhou, X. Wang, X. Sun, Q. Peng and Y. Li, J. Catal., 2005, 229,
206.
Notes and references
37. G. Liu, Z. Wang, M. Jia, X. Zou, X. Zhu, W. Zhang and D. Jiang, J.
Phys. Chem. B, 2006, 110, 16953.
38. L. Geng, M. Zhang, W. Zhang, M. Jia, W. Yan and G. Liu, Catal.
Sci. Technol., 2015, 5, 3097.
39. H.-X. Mai, L.-D. Sun, Y.-W. Zhang, R. Si, W. Feng, H.-P. Zhang, H.-
C. Liu and C.-H. Yan, J. Phys. Chem. B, 2005, 109, 24380.
40. M. Zhang, W. Zhu, G. Liu, X. Zhang, Y. Zu, W. Zhang, W. Yan and
M. Jia, Chin. J. Catal., 2012, 33, 465.
1. C. Sun, H. Li and L. Chen, Energy Environ. Sci., 2012, 5,8475.
2. A. Trovarelli and P. Fornasiero, In Catalysis by Ceria and Related
Materials, 2nd ed. Imperial College Press: London, 2013, 888.
3. C. Tang, H. Zhang and L. Dong, Catal. Sci. Technol., 2016, 6, 1248.
4. W. C. Chueh, Y. Hao, W. Jung and S. M. Haile, Nat Mater., 2012,
11, 155.
5. F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G.
Comelli and R. Rosei, Science, 2005, 309, 752.
41. T. Taniguchi, T. Watanabe, N. Sugiyama, A. K. Subramani, H.
Wagata, N. Matsushita and M. Yoshimura, J. Phys. Chem. C,
2009, 113, 19789.
42. Y. Li, Z. Wei, F. Gao, L. Kovarik, C. H. F. Peden and Y. Wang, J.
Catal., 2014, 315, 15.
43. Y. Li, Z. Wei, F. Gao, L. Kovarik, R. A. L. Baylon, C. H. F. Peden and
Y. Wang, ACS Catal., 2015, 5, 3006.
44. J. Xu, J. Harmer, G. Li, T. Chapman, P. Collier, S. Longworth and
S. C. Tsang, Chem. Commun., 2010, 46, 1887.
45. W. Gao, Z. Zhang, J. Li, Y. Ma and Y. Qu, Nanoscale, 2015, 7,
11686.
46. M. Wang, X. Wu, S. Zheng, L. Zhao, L. Li, L. Shen, Y. Gao, N. Xue,
X. Guo, W. Huang, Z. Gan, F. Blanc, Z. Yu, X. Ke, W. Ding, X.-Q.
Gong, C. P. Grey and L. Peng, Sci. Adv., 2015, 1, (E1400133).
47. L. Geng, J. Song, B. Zheng, S. Wu,W. Zhang, M. Jia and G. Liu.
Chin. J. Catal., 2016, 37, 1451.
6. B. M. Reddy, P. Bharali, P. Saikia, A. Khan, S. Loridant,M.Muhler
and W. Grünert, J. Phys. Chem. C, 2007, 111, 1878.
7. X. Gao, A. Vidal, A. Bayon, R. Bader, J. Hinkley, W. Lipinski and A.
Tricoli, J. Mater. Chem. A, 2016, 4, 9614.
8. T. J. Wallington, E. W. Kaiser and J. T. Farrell, Chem. Soc. Rev.,
2006, 35, 335.
9. G. A. Deluga, J. R. Salge, L. D. Schmidt and X. E. Verykios, Science,
2004, 303, 993.
10. T. Montini, M. Melchionna, M. Monai and P. Fornasiero, Chem.
Rev., 2016, 116, 5987.
11. G. Vilé, B. Bridier, J. Wichert and J. Pérez-Ramírez, Angew.
Chem. Int. Ed., 2012, 51, 8620.
12. G. Vilé, S. Colussi, F. Krumeich, A. Trovarelli and J. Pérez-
Ramírez, Angew. Chem. Int. Ed., 2014, 53, 12069.
13. M. Tamura and K. Tomishige, Angew. Chem. Int. Ed., 2015, 54,
864.
14. Z. Zhang, Y. Wang, M. Wang, J. Lü, L. Li, Z. Zhang, M. Li, J. Jiang,
F. Wang. Chin. J. Catal., 2015, 36, 1623.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins