4680
T. Vijai Kumar Reddy et al. / Bioorg. Med. Chem. Lett. 22 (2012) 4678–4680
14. Sabitha, G.; Yadagiri, K.; Bhikshapathi, M.; Chandrashekar, G.; Yadav, J. S.
In conclusion, the total synthesis of (2S,3R)-2-aminododecan-3-
Tetrahedron: Asymm. 2010, 21, 2524.
ol 1 was efficiently synthesized from commercially available 10-
undecenoic acid. Key steps in the developed route were Wittig
reaction and Sharpless asymmetric epoxidation to synthesize the
enantiomerically pure epoxy alcohol and regioselective epoxide
azidolysis for the synthesis of target molecule 1. The proposed
route constitutes a valuable alternative to the established method-
ologies, as the raw material comes from renewable sources and
most followed steps are operationally simple and high yielding.
The antifungal activity of the title compound 1 was found to be
comparable to miconazole towards all the tested Candida strains.
15. (a) Prabhavathi Devi, B. L. A.; Gangadhar, K. N.; Vijaya Lakshmi, K.;
Ramakrishna, S.; Madhusudan, K.; Rao, P. V.; Prasad, R. B. N.; Patent No: WO
2010/079514 A1.; (b) Kurashina, Y.; Miura, A.; Enomoto, M.; Kuwahara, S.
Tetrahedron 2011, 67, 1649; (c) Ishmuratov, G. Y.; Yakovleva, M. P.; Kharisov, R.
Y.; Botsman, O. V.; Izibarov, O. I.; Mannapov, A. G.; Tolstikov, G. A. Chem. Nat.
Compounds 2001, 37, 190.
16. (a) Fernades, R. A.; Kumar, P. Tetrahedron 2002, 58, 6685; (b) Piva, O.
Tetrahedron 1994, 50, 13687.
17. Dinda, S. K.; Das, S. K.; Panda, G. Tetrahedron 2010, 66, 9304.
18. Zhang, Z. B.; Wang, Z. M.; Wang, Y. X.; Liu, H. Q.; Lei, G. X.; Shi, M. J. Chem. Soc.,
Perkin Trans. 1 2000, 53.
19. (a) Barrett, A. G. M.; Head, J.; Smith, M. L.; Stock, N. S.; White, A. J. P.; Williams,
D. J. J. Org. Chem. 1999, 64, 6005; (b) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc.
1980, 102, 5974.
20. Sasaki, M.; Tanino, K.; Hirai, A.; Miyashita, M. Org. Lett. 2003, 5, 1789.
21. Amsterdam, D. Susceptibility testing of antimicrobials in liquid media. In
Antibiotics in Laboratory Medicine; Loman, V., Ed., 4th Ed.; Williams and
Wilkins: Baltimore, MD, 1996; pp 52–111.
22. Assay for antifungal activity: The antifungal activity of the synthesized (2S,3R)-
2-aminododecan-3-ol was determined using well diffusion method21 against
different pathogenic Candida reference strains procured from the Microbial
Type Culture Collection (MTCC), CSIR-Institute of Microbial Technology,
Chandigarh, India. The Candida reference strains were seeded on the surface
of the media petri plates, containing Muller-Hinton agar with 0.1 mL of
previously prepared microbial suspensions individually containing 1.5 ꢁ 108
cfu mLꢀ1 (equal to 0.5 McFarland). Wells of 6.0 mm diameter were prepared in
Acknowledgements
One of the authors T.V.K. Reddy thanks the Council of Scientific
and Industrial Research (CSIR), New Delhi, India, for financial sup-
port as Junior Research Fellowship (JRF).
Supplementary data
Supplementary data (all of the full procedures and chemical
compound information) associated with this article can be found,
the media plates using
aminododecan-3-ol at a dose range of 300–1.4
a
cork borer and the synthesized (2S,3R)-2-
l
g wellꢀ1 was added in each
well under sterile conditions in a laminar air flow chamber. Standard antibiotic
solutions of fluconazole, miconazole, nystatin and amphotericin B at a dose
range of 300–1.4 lg
wellꢀ1 and the well containing methanol served as
positive and negative controls, respectively. The plates were incubated for 24 h
at 30 °C and the well containing the least concentration showing the inhibition
zone is considered as the minimum inhibitory concentration. All experiments
were carried out in duplicates and mean values are represented.
References and notes
1. Kossuga, M. H.; Macmillan, J. B.; Rogers, E. W.; Molinski, T. F.; Nascimento, G. G.
F.; Rocha, R. M.; Berlinck, R. G. S. J. Nat. Prod. 1879, 2004, 67.
2. Newman, D. J.; Cragg, G. M. J. Nat. Prod. 2007, 70, 461.
3. Hospenthal, D. R.; Murray, C. K.; Rinaldi, M. G. Diagn. Microbiol. Infect. Dis. 2004,
48, 153.
4. (a) Mayer, A. M. S.; Hamann, M. T. Mar. Biotechnol. 2004, 6, 37; (b) Mayer, A. M.
S.; Hamann, M. T. Comp. Biochem. Physiol. 2002, 132C, 315.
23. The spectral data of some selected compounds are given below:
Compound 8: ½a 2D8
ꢂ
+30.9 (c 1.05, CHCl3.); mp 57.0-59.0 °C; IR (KBr)
vmax: 3440,
2925, 2854, 1596, 1215, 1086 cmꢀ1
;
1H NMR (500 MHz, CDCl3) d: 0.88 (3H, t,
J = 6.9 Hz, H-12), 1.24–1.36 (12H, m, H-6, H-7, H-8, H-9, H-10, H-11), 1.40–1.47
(2H, br m, H-5), 1.52–1.59 (2H, br m, H-4), 2.83–2.85 (1H, td, J = 5.93, 1.97 Hz,
H-3), 2.88–2.92 (1H, td, J = 5.93, 1.97 Hz, H-2), 3.55–3.62 (1H, m, H-1b), 3.82–
3.89 (1H, m, H-1a); 13C NMR (75 MHz, CDCl3) d: 14.0 (CH3), 22.6 (CH2), 25.9
(CH2), 29.2 (CH2), 29.3 (CH2), 29.4 (CH2), 29.5 (CH2), 31.5 (CH2), 31.8 (CH2), 55.9
(CH), 58.3 (CH), 61.7 (CH2); m/z (EI) 169 [M-CH2OH]+.
5. Molinski, T. F. Curr. Med. Chem. Anti-Infect. Agents 2004, 3, 197.
6. Clark, R. J.; Garson, M. J.; Hooper, J. N. A. J. Nat. Prod. 2001, 64, 1568.
7. (a) Makarieva, T. N.; Denisenko, V. A.; Stonik, V. A.; Milgrom, J. M.; Rashkes, Y.
V. Tetrahedron Lett. 1989, 30, 6581; (b) Molinski, T. F.; Makarieva, T. N.; Stonik,
V. A. Angew. Chem. Int. Ed. 2000, 39, 4076; (c) Nicholas, G. M.; Hong, T. W.;
Molinski, T. F.; Lerch, M. L.; Cancilla, M. T.; Lebrilla, C. B. J. Nat. Prod. 1999, 62,
1678; (d) Nicholas, G. M.; Molinski, T. F. J. Am. Chem. Soc. 2000, 122, 4011.
8. For reviews, see: (a) Koskinen, P. M.; Koskinen, A. M. P. Synthesis 1998, 1075;
(b) Howell, A. R.; So, R. C.; Richardson, S. K. Tetrahedron 2004, 60, 11327.
9. Zaed, A. M.; Sutherland, A. Org. Biomol. Chem. 2011, 9, 8030.
10. Chen, B. S.; Yang, L. H.; Ye, J. L.; Huang, T.; Ruan, Y. P.; Fu, J.; Huang, P. Q. Eur. J.
Med. Chem. 2011, 46, 5480.
11. (a) Jiang, S.; WU, Y. L.; Yao, Z. J. Chinese J. Chem. 2002, 20, 692; (b) Sharma, A.;
Sankaranarayanan, S.; Chattopadhyay, S. J. Org. Chem. 1814, 1996, 61; (c) Lu, S.
F.; O’yang, Q. Q.; Guo, Z. W.; Yu, B.; Hui, Y. Z. J. Org. Chem. 1997, 62, 8400; (d) Lu,
S. F.; O’yang, Q. Q.; Guo, Z. W.; Yu, B.; Hui, Y. Z. Angew. Chem. Int. Ed. Engl. 1997,
36, 2344; (e) Smith, J. A.; Brzezinska, K. R.; Valenti, D. J.; Wagener, K. B.
Macromolecules 2000, 33, 3781.
Compound 11: ½a 2D8
ꢂ
+15.1 (c 0.85, CHCl3); IR (neat)
vmax: 3519, 2925, 2854,
2100, 1598, 1459, 1364, 1189, 1176, 981, 666 cmꢀ1
;
1H NMR (300 MHz, CDCl3)
d: 0.88 (3H, t, J = 6.9 Hz, H-12), 1.20–1.35 (14H, m, H-5, H-6, H-7, H-8, H-9, H-
10, H-11), 1.37–1.57 (2H, m, H-4), 2.17 (1H, br s, -OH), 2.46 (3H, s, ArCH3),
3.52–3.58 (1H, br m, H-2), 3.63–3.70 (1H, br m, H-3), 4.17 (1H, dd, J = 10.7,
7.3 Hz, H-1b), 4.31 (1H, dd, J = 10.5, 3.2 Hz, H-1a), 7.36 (2H, d, J = 8.1 Hz, ArH),
7.82 (2H, d, J = 8.3 Hz, ArH); 13C NMR (75 MHz, CDCl3) d: 14.0 (CH3), 21.6 (CH3),
22.6 (CH2), 25.4 (CH2), 29.2 (CH2), 29.3 (CH2), 29.4 (CH2), 29.6 (CH2), 31.8 (CH2),
33.2 (CH2), 64.6 (CH2), 68.9 (CH), 70.9 (CH), 127.9 (2ꢁCH), 129.9 (2ꢁCH), 132.5
(C), 145.2 (C); m/z (ESI) 420 (MNa+. C19H31N3O4NaS requires 420.1932).
Compound 1: ½a 2D9
ꢂ
+4.5 (c 0.22, CH3OH), lit.1
max: 3384, 2927, 2855, 1647, 1370,
1H NMR (300 MHz, CDCl3+CD3OD) d: 0.88 (3H,
½ ꢂ +4.6 (c 0.5, CH3OH); mp
a 2D9
106.8–109 °C, lit.9 mp 107–109 °C; IR (KBr)
v
1216, 1120, 976, 758, 666 cmꢀ1
;
t, J = 6.7 Hz, H-12), 1.19 (3H, d, J = 6.7 Hz, H-1), 1.22–1.32 (16H, m, H-4, H-5, H-
6, H-7, H-8, H-9, H-10, H-11), 3.18–3.27 (1H, br m, H-2), 3.57–3.76 (1H, br m,
H-3); 13C NMR (75 MHz, CDCl3+CD3OD) d: 11.7 (CH3),14.5 (CH3), 23.2 (CH2),
26.4 (CH2), 29.8 (CH2), 30.1 (2ꢁCH2), 30.1 (CH2), 32.4 (CH2), 33.4 (CH2), 51.8
(CH), 70.6 (CH); m/z (ESI) 202 (MH+. C12H28NO requires 202.2170).
12. (a) Nishio, T.; Niikura, K.; Matsuo, Y.; Ijiro, K. Chem. Commun. 2010, 46, 8977;
(b) Mori, K.; Harada, H.; Zagatti, P.; Cork, A.; Hall, D. R. Liebigs Ann. Chem. 1991,
259; (c) Liu, Y.; Patricelli, M. P.; Cravatt, B. F. Proc. Natl. Acd. Sci. 1999, 96, 14694.
13. Ghosal, P.; Shaw, A. K. Tetrahedron Lett. 2010, 51, 4140.