510
M. Xu et al. / Spectrochimica Acta Part A 78 (2011) 503–511
interactions of the small molecule compounds binding to BSA and
DNA, and helpful in the development of their potential biological,
pharmaceutical and physiological implications in the future.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
Fig. 10. Agarose gel electrophoresis patterns for the cleavage reaction of the pBR
322 DNA with 60 M of free ligand and free Pr(NO3)3·6H2O for 5 h at 37 ◦C in a
TBE buffer at pH 8.3. Lane 1: pure DNA, without any additives; lane 2: DNA + 60 M
of Pr(NO3)3·6H2O; lane 3: DNA + 60 M of ligand; lane 4: DNA + 60 M of Pr(III)
complex.
References
[1] A. Datta, N.K. Karan, S. Mitra, V.J. Gramlich, J. Chem. Crystallogr. 33 (2003)
579–583.
[2] B. Gillon, C. Mathoniere, E. Ruiz, S. Alvarez, A. Cousson, T.M. Kahn, J. Am. Chem.
Soc. 124 (2002) 14433–14441.
[3] D.C. Carter, J.X. Ho, Adv. Protein Chem. 45 (1994) 153–203.
[4] F. Zsila, Z. Bikadi, M. Simonyi, Biochem. Pharmacol. 65 (2003) 447–456.
[5] Y.B. Zeng, N. Yang, W.S. Liu, N. Tang, J. Inorg. Biochem. 97 (2003) 258–264.
[6] A.E. Friedman, C.V. Kumar, N.J. Turro, J.K. Barton, Nucleic Acids Res. 19 (1991)
2595–2602.
[7] A.M. Pyle, T. Morii, J.K. Barton, J. Am. Chem. Soc. 112 (1990) 9432–9434.
[8] D.C. Cater, J.X. Ho, Adv. Protein Chem. 45 (1994) 153–203.
[9] S. Curry, P. Brick, N.P. Frank, Biochim. Biophys. A 1141 (1991) 131–140.
[10] Y.M. Wang, Y. Song, D.L. Kong, Chin. Sci. Bull. 50 (2005) 1839–1844.
[11] R.K. Mehra, K. Tran, G.W. Scott, P. Mulchandani, S.S. Saini, J. Inorg. Biochem. 61
(1996) 125–142.
Fig. 11. Agarose gel electrophoresis of the cleavage of the pBR 322 DNA in the
absence (lane 1) and in the presence of Pr(III) complex at various concentra-
tions for 5 h at 37 ◦C in a TBE buffer at pH 8.3. Lane 1: DNA control; lanes 2–6:
DNA + [complex] = 20, 40, 60, 80, 100 M, respectively.
[12] Y.B.
Battal,
M.
Topuzogullari,
Z.
Mustafaeva,
J.
Fluoresc.,
[13] A.R.A. Abd-Allah, B.B. Gannam, F.M.A. Hamada, Pharm. Res. 42 (2000) 145–150.
[14] W.E. Sanders Jr., Clin. Infect. Dis 14 (1992) 539–554.
[15] K.C. Skyrianou, E.K. Efthimiadou, V. Psycharis, A. Terzis, D.P. Kessissoglou, G.
Psomas, J. Inorg. Biochem. 103 (2009) 1617–1625.
[16] K.C. Skyrianou, F. Perdih, I. Turel, D.P. Kessissoglou, G. Psomas, J. Inorg. Biochem.
104 (2010) 161–170.
[17] A. Tarushi, C.P. Raptopoulou, V. Psycharis, A. Terzis, G. Psomas, D.P. Kessis-
soglou, Bioorg. Med. Chem. 18 (2010) 2678–2685.
[18] R.T. Mostafa, H.M. Seyed, R. Bijan, Biochem. Mol. Biol. Int. 39 (2006) 530–536.
[19] S. Zahra, H. Saman, R. Bijan, N.G. Mohsen, Biochem. Mol. Biol. Int. 39 (2006)
636–641.
[20] N. Sreerama, R.W. Woody, Anal. Biochem. 287 (2000) 252–260.
[21] N.J. Greenfield, Anal. Biochem. 235 (1995) 1–10.
[22] N. Sreerama, R.W. Woody, Anal. Biochem. 209 (1993) 32–44.
[23] J.Y. Zheng, A.C. Celeste, K.R. Vipin, T.C. Cheng, J.D. Joseph, M.L. Roger, J. Phys.
Chem. B 108 (2004) 17238–17242.
[24] A.V. Milyutin, L.R. Amirova, V.E. Kolla, F.Y. Nazmetdinov, L.P. Drovosekova, Y.S.
Andreichikov, Pharm. Chem. J. 32 (1998) 422–424.
[25] P.X. Xi, Z.H. Xu, F.J. Chen, Z.Z. Zeng, X.W. Zhang, J. Inorg. Biochem. 103 (2009)
210–218.
Fig. 12. Agarose gel showing cleavage of pBR322 DNA (0.1 g/L) incubated with
0.1 mM Pr(III) complexes for 5 h. at 37 ◦C in TBE buffer at pH 8.3. Lane 1: DNA control;
lane 2: DNA + Pr(III) complex; lane 3: DNA + Pr(III) complex + 100 mM NaN3; lane
4: DNA + Pr(III) complex + 100 mM l-Histidine; lane 5: DNA + Pr(III) complex + 2 L
DMSO; lane 6: DNA + Pr(III) complex + 2 L EtOH.
The DNA cleavage activity of the complexes has been studied
in the presence of several additives to understand the mechanis-
tic pathway involved in the DNA cleavage reaction (Fig. 12). From
Fig. 12, we can see that no obvious inhibitions are observed for the
Pr(III) complex in the presence of NaN3 (lane 3) and l-Histidine
(lane 4), the results rule out the possibility of DNA cleavage by the
singlet oxygen or a singlet oxygen-like entity. The addition of DMSO
(lane 5), EtOH (lane 6) partly diminishes the nuclease activity of the
Pr(III) complex which is indicative of the involvement of hydroxyl
radical in the cleavage process.
[26] F.J. Chen, G.Q. Liu, Z.H. Xu, Z.Z. Zeng, Biochem. Mol. Biol. Int. 41 (2008) 305–309.
[27] M. Eriksson, M. Leijon, C. Hiort, B. Norden, A. Gradsland, Biochemistry 33 (1994)
5031–5040.
[28] Y. Xiong, X.F. He, X.H. Zou, J.Z. Wu, X.M. Chen, L.N. Ji, R.H. Li, J.Y. Zhou, R.B. Yu,
J. Chem. Soc., Dalton Trans. 1 (1999) 19–24.
[29] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81–122.
[30] F.D. Lewis, S.V. Barancyk, J. Am. Chem. Soc. 111 (1989) 8653–8661.
[31] N. Raman, A. Kulandaisamy, K. Jeyasubramanian, J. Ind. Chem. 41A (2002)
942–949.
4. Conclusions
[32] B.D. Wang, Z.Y. Yang, D.W. Zhang, Y. Wang, Spectrochim. Acta Part A 63 (2006)
213–219.
[33] M.M. Moawad, W.G. Hanna, J. Coord. Chem. 55 (2002) 439–457.
[34] T.M.A. Ismail, J. Coord. Chem. 58 (2005) 141–151.
[35] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, second ed. Plenum, New
York, 1999.
[36] I. Sjoholm, B. Ekman, A. Kober, I. Ljungstedt-Pahlman, B. Seiving, T. Sjodin, Mol.
Pharmacol. 16 (1979) 767–777.
[37] S.S. Lehrer, Biochemistry 10 (1971) 3254–3263.
[38] J.R. Lakowicz, G. Weber, Biochemistry 12 (1973) 4161–4170.
[39] C.Q. Jiang, M.X. Gao, J.X. He, Anal. Chim. Acta 452 (2002) 185–189.
[40] Y.M. Huang, Z.J. Zhang, D.J. Zhang, Talanta 53 (2001) 835–841.
[41] L.H. Qian, X.L. Wang, Z.H. Tu, Acta Pharmacol. Sin. 22 (2001) 847–850.
[42] P. Das, A. Mallick, B. Haldar, A. Chakrabarty, N. Chattopadhyay, J. Chem. Phys.
125 (2006), 044516/1–6.
The Pr(III) complex are prepared from Pr(NO3)3·6H2O and
acylhydrazone ligands derived from ofloxacin. Firstly, the interac-
tion between the Pr(III) complex and BSA has been investigated
by fluorescence method combined with UV–Vis and CD spec-
troscopy techniques under simulative physiological conditions.
The results showed that the intrinsic fluorescence of BSA was
quenched through static quenching mechanism and the Pr(III) com-
plex bound to BSA with high affinity which is predominantly owing
to hydrophobic and electrostatic effect. The Pr(III) complex can be
deposited and transported by albumin. Experimental results also
showed that the binding of the Pr(III) complex to BSA induced a
conformational change of BSA, which was further proved by the
quantitative analysis data of CD spectrum. Secondly, the DNA bind-
ing mode of Pr(III) complex and ligand with CT DNA were also
studied via spectra and viscosity measurement. The results indi-
cate that the Pr(III) complex bind to DNA via an intercalation mode
and the Pr(III) complex can bind to DNA more strongly than the
free ligand. Noticeably, the Pr(III) complex has been found to pro-
mote cleavage of plasmid pBR 322 DNA. Results obtained from our
present work would be useful to understand the mechanism of
[43] A. Mallick, B. Haldar, N. Chattopadhyay, J. Phys. Chem.
14683–14690.
B 109 (2005)
[44] M. Bardhan, G. Mandal, T. Ganguly, J. Appl. Phys. 106 (2009) 034701–034705.
[45] S.Y. Bi, L. Ding, Y. Tian, D.Q. Song, X. Zhou, H.Q. Zhang, J. Mol. Struct. 703 (2004)
37–45.
[46] P.D. Ross, S. Subramanian, Biochemistry 20 (1981) 3096–3102.
[47] S.N. Timaseff, in: H. Peeters (Ed.), Proteins of Biological Fluids, Pergamon Press,
Oxford, 1972, pp. 511–519.
[48] W. De, W. Horrocks, W.E. Collier, J. Am. Chem. Soc. 103 (1981) 2856–2862.
[49] X.H. Liu, X.P. Xian, F.J. Chen, Z.H. Xu, Z.Z. Zeng, J. Photochem. Photobiol. B 92
(2008) 98–102.