Page 5 of 6
Ple Na es we dJ oo u nr no at l ao df jCu hs et mm i as tr rgy ins
Journal Name
of GVL in the same reaction conditions, respectively (Table 2, 3.
ARTICLE
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Poliakoff, Science, 2012, 337, 695-6D9O9I.: 10.1039/D0NJ02874F
G. W. Huber, S. Iborra and A. Corma, Chem Rev, 2006,
entries 6 and 7). The catalytic activity of Cu
surpassed the performance of most reported oxide catalysts
Table S3). However, when LA was selected as the reactant,
only 38% of GVL was gained (Table 2, entry 8). Overall, the
Cu Ni /Zr Al catalyst exhibited outstanding performance for
a series of levulinate esters to GVL in the CTH reaction.
The stability of Cu Ni /Zr Al was also examined and
the results were shown in Fig. S4. The fresh Cu Ni /Zr Al
provided 96.8% yield of GVL under the optimized conditions.
2 1 3 7 z
Ni /Zr Al O
4
.
1
06, 4044-4098.
(
5
6
.
.
Z. P. Yan, L. Lu and S. Liu, Energ Fuel, 2009, 23, 3853-3858.
C. Mei and J. A. Dumesic, Chem Commun, 2011, 47,
2
1
3
7 z
O
1
2233-12235.
7.
8.
L. Deng, Y. Zhao, J. Li, Y. Fu, B. Liao and Q. X. Guo,
ChemSusChem, 2010, 3, 1172-1175.
K. Yan, Y. Yang, J. Chai and Y. Lu, Appl. Catal. B Environ,
2015, 179, 292-304.
M. Chalid, A. A. Broekhuis and H. J. Heeres, J Mol Catal A-
Chem, 2011, 341, 14-21.
L. E. Manzer, Appl Catal A-Gen, 2004, 272, 249-256.
Y. Zhen, H. Yao-Bing, G. Qing-Xiang and F. Yao, Chem
Commun, 2013, 49, 5328-5330.
S. Saravanamurugan, O. N. Van Buu and A. Riisager,
ChemSusChem, 2011, 4, 723-726.
X. Hu and C. Z. Li, Green Chem, 2011, 13, 1676-1679.
M. J. Gilkey and B. Xu, ACS Catal, 2016, 6, 1420-1436.
K. Yan, Y. Liu, Y. Lu, J. Chai and L. Sun, Catalysis Science &
Technology, 2017, 7, 1622-1645.
Y. Kuwahara, W. Kaburagi and T. Fujitani, RSC Adv., 2014,
4, 45848-45855.
X. Tang, L. Hu, Y. Sun, G. Zhao, W. Hao and L. Lin, RSC Adv,
7 z
O
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
1
3
2
1
3
7 z
O
Then the used catalyst was separated by centrifugation, 9.
washed with water and ethanol, respectively. Finally, the
1
1
0.
1.
recovered catalyst was dried at 80°C for 12 h to the next cycle.
The yield of GVL decreased slightly after four cycles. After
being reused for four consecutive runs, the recovered
1
1
14.
15.
2.
3.
2 1 3 7 z 2
Cu Ni /Zr Al O to be calcined in the flow of H at 400°C for 4 h
exhibited GVL yield (92.4%) equivalent to the fresh catalyst
(
96.8%) 3 . Compared with the fresh Cu
1, 32
Ni /Zr Al O catalyst,
2 1 3 7 z
no obvious diffraction peak change can be observed for the
recycled catalyst (Fig. 3). The BET surface area of the reused
catalyst decreased slightly due to a slight agglomeration of the 16.
2
4
catalyst after five recycles (Table S1) .
1
7.
2
013, 3, 10277-10284.
Conclusions
18.
J. Song, L. Wu, B. Zhou, H. Zhou, H. Fan, Y. Yang, Q. Meng
and B. Han, Green Chem, 2015, 17, 1626-1632.
B. Cai, X.-C. Zhou, Y.-C. Miao, J.-Y. Luo, H. Pan and Y.-B.
Huang, ACS Sustain Chem Eng, 2016, 5, 1322-1331.
A. M. Hengne, A. V. Malawadkar, N. S. Biradar and C. V.
Rode, RSC Adv, 2014, 4, 9730-9736.
S.-T. Gao, W. Liu, C. Feng, N.-Z. Shang and C. Wang, Catal
Sci Technol, 2016, 6, 869-874.
N. Shang, X. Zhou, C. Feng, S. Gao, Q. Wu and C. Wang, Int
J Hydrogen Energ, 2017, 42, 5733-5740.
T. Feng, J.-M. Wang, S.-T. Gao, C. Feng, N.-Z. Shang, C.
Wang and X.-L. Li, Appl Sur Sci, 2019, 469, 431-436.
S. Cheng, N. Shang, X. Zhou, C. Feng, S. Gao, C. Wang and
Z. Wang, New J Chem, 2017, 41, 9857-9865.
C. Chen, N. Zhang, Y. He, B. Liang, R. Ma and X. Liu, ACS
Appl Mater Inter, 2016, 8, 23114-23121.
P. P. Upare, M. G. Jeong, Y. K. Hwang, D. H. Kim, Y. D. Kim,
W. H. Dong, U. H. Lee and J. S. Chang, Appl Catal A-
Geneal, 2015, 491, 127-135.
S. J. Han, Y. Bang, J. Yoo, S. Park, K. H. Kang, J. H. Choi, H.
S. Ji and I. K. Song, Int J Hydrogen Energ, 2014, 39, 10445-
Cu-Ni bimetal supported on Zr-Al oxides was fabricated and
which exhibited superior catalytic activity for the
hydrogenation of levulinate esters into γ-valerolactone with 2-
BuOH as hydrogen source. These results proved that the
1
2
9.
0.
introducing of ZrO
2
in the Al O
2 3
support increased the effective 21.
acid and basic sites on the surface of the catalyst, which is
beneficial for the transformation reaction. This paper provides
a feasible approach to design efficient catalyst for the
hydrogenation of levulinate esters, and will inspire the
development of Zr-Al oxides-based heterogeneous catalysts.
2
2
2
2
2.
3.
4.
5.
Conflicts of interest
There are no conflicts to declare.
26.
27.
Acknowledgements
Financial supports from the National Natural Science
Foundation of China (31671930) the Natural Science
Foundation of Hebei Province (B2020204003, B2019204023,
1
0453.
2
8.
M. Chia and J. A. Dumesic, Chem Commun (Camb), 2011,
47, 12233-12235.
M. I. Ramos, N. M. Suguihiro, E. A. Brocchi, R. Navarro and
I. G. Solorzano, Metall Mater Trans A, 2017, 48, 2643-
653.
Y. Kuwahara, W. Kaburagi and T. Fujitani, RSC Adv, 2014,
, 45848-45855.
J. He, H. Li, Y. M. Lu, Y. X. Liu, Z. B. Wu, D. Y. Hu and S.
Yang, Appl Catal A-Gen, 2016, 510, 11-19.
B2018204145, B2016204136, B2015204003) and the Natural 29.
Science Foundation of Hebei Agricultural University
2
(
ZD201613,
LG201709,
LG201711)
are
gratefully
3
0.
acknowledged.
4
31.
32.
Notes and references
T. Xing, H. Chen, H. Lei, W. Hao, S. Yong, X. Zeng, L. Lu and
S. Liu, Appl Catal B-Environ, 2014, 147, 827-834.
1
.
H. Zhu, M. Zhou, Z. Zuo, G. Xiao and X. Rui, Korean J Chem
Eng, 2014, 31, 593-597.
2
.
T. V. Choudhary and C. B. Phillips, Appl Catal A-Gen, 2011,
3
97, 1-12.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins